#### **GANPAT UNIVERSITY**

### B.TECH SEM. I(ME/MC/CIVIL/EE)

## Regular Examination November - December 2014

# 2ME101 ELEMENTS OF MECHANICAL ENGINEERING

TIME: -3 Hours.

**TOTAL MARKS-60** 

| Instructions:(1 | ) <i>I</i> | Attempt | all | questions. |
|-----------------|------------|---------|-----|------------|
|-----------------|------------|---------|-----|------------|

- (2) Figure to the right indicates full marks.
- (3) Assume required data if necessary.

#### **SECTION-I**

| Q-1                  | Answer the following questions.                                                                                      |          |
|----------------------|----------------------------------------------------------------------------------------------------------------------|----------|
| (a)                  | Define a) Latent Heat b) Higher calorific Value c) Lower Calorific Value d) Entropy e) Zeroth law of thermodynamics. | [05]     |
| (b)                  | Derive an expression for air standard efficiency of Diesel cycle                                                     | [05]     |
| (8)                  | OR .                                                                                                                 |          |
| Q-1                  | Answer the following questions.                                                                                      |          |
| (a)                  | Define a) Prime Mover b) Extensive property c) High grade energy d) Enthalpy                                         | [05]     |
|                      | e) First law of thermodynamics                                                                                       | (O#1     |
| <b>(b)</b>           | In an Otto cycle the maximum temperature and minimum temperature are 1673 K                                          | [05]     |
|                      | and 228 K. The heat supplied per kg of air is 800 kJ. Calculate a) Compression                                       |          |
|                      | ratio and b) Efficiency of the cycle.                                                                                |          |
| Q-2                  | Answer the following questions.                                                                                      |          |
| $\frac{Q^{-2}}{(a)}$ | Prove that $Cp - Cv = R$                                                                                             | [05]     |
| (b)                  | A cylindrical vessel of 1m diameter and 4m length has hydrogen gas at pressure                                       | [05]     |
| (0)                  | of 100 kPa and 27°C. Determine the amount of heat to be supplied so as to                                            | . ,      |
|                      | increase pressure to 125 kPa. For Hydrogen, take Cp = 14.307 kJ/kg K, Cv =                                           |          |
|                      | 10.183 kJ/kg K                                                                                                       |          |
|                      |                                                                                                                      |          |
|                      | OR                                                                                                                   |          |
| Q-2                  | Answer the following questions.                                                                                      |          |
| (a)                  | An ideal gas is heated from 25°C to 145°C. The mass of gas is 2 kg. Determine a)                                     | [05]     |
|                      | Cp and Cv b) $\Delta U$ c) $\Delta H$ . Take R = 287 J/kg K and $\gamma = 1.4$ for gas.                              | 1051     |
| <b>(b)</b>           | Determine the work done in compressing 1 kg of air from a volume of 0.15 m <sup>3</sup> at a                         | [05]     |
|                      | pressure of 1 bar to a volume of 0.05 m <sup>3</sup> , when the compression is a) Isothermal                         |          |
|                      | and b) Adiabatic. Take $\gamma = 1.4$                                                                                |          |
| Q-3                  | Answer any two of the following questions.                                                                           | [5x2=10] |
| (a)                  | Explain construction and working of Babcock and Wilcox boiler with neat sketch.                                      | [        |
| (b)                  | Explain a) Dryness Fraction b) Enthalpy of evaporation and c) Degree of Super                                        |          |
|                      | heatd) Wet steam e) Wetness Fraction.                                                                                |          |
| (c)                  | Give classification of steam boilers in detail.                                                                      |          |

### **SECTION-II**

| Q-4 | Answer the following questions.                                                                                                                                                                                                                |                |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| (a) | The following results refer to a test on C.I engine.  I.P = 37 kW, F.P = 6 kW, Bsfc = 0.28 kg/kWh and C.V = 44300 kj/kg.  Calculate a) Mechanical efficiency b) Brake thermal efficiency. c) Indicated                                         | [05]           |
| (b) | thermal efficiency.  Differentiate between S.I engine and C.I engine.                                                                                                                                                                          | [05]           |
| (0) | OR N                                                                                                                                                                                                                                           |                |
| Q-4 | Answer the following questions.                                                                                                                                                                                                                |                |
|     |                                                                                                                                                                                                                                                | (0.#3          |
| (a) | A petrol engine having a compression ratio of 7 has a brake thermal efficiency which is 40% of the ideal air standard efficiency. The calorific value of the fuel used is 42000 kJ/kg. Calculate the fuel consumption in kg per hour if engine | [05]           |
|     | delivers 15 kW.                                                                                                                                                                                                                                |                |
| (b) | Differentiate between 2 stroke and 4 stroke engine.                                                                                                                                                                                            | [05]           |
| Q-5 | Answer the following questions.                                                                                                                                                                                                                |                |
| (a) | Compare Belt, Chain and Gear Drive.                                                                                                                                                                                                            | [05]           |
| (b) | Define a) Priming b) C.O.P c) Pump d) Air conditioning e) Slip in a pump  OR                                                                                                                                                                   | [05]           |
| Q-5 | Answer the following questions.                                                                                                                                                                                                                | <b>(0.83</b> ) |
| (a) | Derive an expression for work done in reciprocating air compressor with                                                                                                                                                                        | [05]           |
|     | clearance volume.                                                                                                                                                                                                                              | 102)           |
| (b) | Explain in detail about VCR cycle with the help of p-h diagram.                                                                                                                                                                                | [05]           |
| Q-6 | Answer any two of the following questions.                                                                                                                                                                                                     | [5x2=10]       |
| (a) | What is governor? Explain Quality and Quantity governing in detail.                                                                                                                                                                            | •              |
| (b) | Define a) Elasticity b) Hardness c) Resilience d) Toughness e) Stiffness                                                                                                                                                                       |                |
| (c) | What is the function of Coupling? Differentiate between brake and clutch.                                                                                                                                                                      |                |

## END OF PAPER