	Date: 19/12/2016 Seat No.	
	GANPAT UNIVERSITY	
Е	B. Tech. Sem- II (NEW) CBCS REMEDIAL EXAMINATION, NOV-DEC 2016	
	SUBJECT: 2HS102 LINEAR ALGEBRA Total marks:	60
Time: 3	tion: (1) All questions are compulsory.	
mourae	(2) Write answer of each section in separate answer books.	
	(3) Figures to the right indicate marks of questions. Section $-I$	
Que-1	Answer the following	
•	(a) Find the Inverse of matrix $A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \end{bmatrix}$	4
		2
	(b) Test for the consistency and solve the system of equations $2x + 3y = 1$	3
	(b) Test for the consistency and solve the system of equations $5x - y = 11$	
	$\begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \end{bmatrix}$	3
	(c) Find the Rank of matrix $A = \begin{bmatrix} 1 & 1 & 2 & 4 \\ 3 & 1 & 3 & -2 \end{bmatrix}$	
Que-1	Answer the following	
Que 1	$\begin{bmatrix} 2 & -1 & 1 \end{bmatrix}$	4
	(a) Find the Eigen value and Eigen vector of the matrix $\begin{vmatrix} -1 & 2 & -1 \\ 1 & 1 & 2 \end{vmatrix}$	
	(b) Check whether the given vectors are L.D. or L.I.? If L.D. then find a relation between them	3
	$x_1 = (3,1,1), x_2 = (2,0,-1), x_3 = (4,2,1)$	
	(c) Investigate for what values of λ and μ the system $\begin{cases} x + y + z = 6 \\ y + 2y + 3z = 10 \end{cases}$. 3
	(c) investigate for what values of λ and μ the system $\begin{cases} x + 2y + 3z = 10 \\ x + 2y + \lambda z = \mu \end{cases}$	
	have (i) no solution (ii) a unique solution and (iii) an infinite solutions.	
Que-2	Answer the following.	
	(a) Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \end{bmatrix}$	4
	(a) verify dayley manifestime the matrix $\mathbf{n} = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -2 & 2 \end{bmatrix}$	
		3
	(b) Show that matrix is $A = \begin{vmatrix} -2 & 0 & -1 \end{vmatrix}$ skew symmetric.	
	(c) Is $\begin{vmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{vmatrix}$ a unitary matrix? Justify	3
	$\left -\frac{i}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right $	
	OR	
Que-2	Answer the following.	
	(a) State the Caley Hamilton theorem and find A ³ for the matrix $A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \end{bmatrix}$	1
		4
)	(b) If $P = \begin{bmatrix} 0 & 1+2i \\ -1+2i & 0 \end{bmatrix}$ obtain matrix $(I - P) (I + P)^{-1}$	3
) .	(c) If $A = \begin{bmatrix} 2+i & 3 & -1+3i \end{bmatrix}$ then show that $A^* A = i$.	3
	1 - 1 - 1 - 5 = 1 - 2i] then show that A A is a Hermitian matrix	5
	Page 1 o	f 2
,		

0

(a) Diagonalise the matrix $A = \begin{bmatrix} 7 & 3 \\ 2 & 5 \end{bmatrix}$ Que-3

- (b) Attempt any two
- Define Hermitian, Skew Hermitian and Unitary Matrices. I
- $\mathbf{x} 3\mathbf{y} 2\mathbf{z} = \mathbf{0}$ Solve the system of linear equation $\begin{cases} 2x - y + 4z = 0 \\ x - 11y + 14z = 0 \end{cases}$ Ii
- **Ii** If $A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$ then using Caley Hemilton theorem find the matrix $A^5 - 3A^4 + A^3 - 7A^2 + 5A + I$

Section - II

Que-4 Answer the following.

- Show that the set M = $\left\{ \begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} / a, b \in R \right\}$ is Vector space under the matrix addition **(a)** defined by $\begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} + \begin{bmatrix} c & 1 \\ 1 & d \end{bmatrix} = \begin{bmatrix} a+c & 1 \\ 1 & b+d \end{bmatrix}$ and the scalar multiplication defined by $k \begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} = \begin{bmatrix} ka & 1 \\ 1 & kb \end{bmatrix}$. (b) Show that $A = \{(t, 2t, -3t)/t \in R\}$ is a subspace of R^3 but $B = \{(t^2, t, 2t)/t \in R\}$
- is not a subspace of \mathbb{R}^3 .

OR

- Answer the following. Que-4
 - (a) Check whether the $V = \{(1, x)/x \in R\}$ is a vector space or not under the operations $(1, x_1) + (1, x_2) = (1, x_1 + x_2)$ and $\alpha((1, x_1) = (1, \alpha x_1)$
 - (b) Define Subspace and Show that $V = \{(x, y)/x = 3y\}$ is a subspace of \mathbb{R}^2

Answer the following. Que-5

- Find the range , rank, null space and nullity for T(a, b) = (a + b, a b, b)(a)
- (b) Check whethet the function $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x, y) = (x + 1, y) are L. T or not?

(c) Test the convergence of
$$\sum_{n=2}^{\infty} \frac{1}{n \log n}$$

OR

- **Que-5** Answer the following.
 - (a) Let T: $V_3 \rightarrow V_3$ defined as $T(l_1) = (l_1 l_2)$, $T(l_2) = (2l_2 + l_3)$, $(T(l_3) = l_1 + l_2 + l_3)$ verify the rank nullity theorem.
 - (b) If $e_1 = (1,0,0)$, $e_2 = (0,1,0)$, $e_3 = (0,0,1)$ then P. T. S = { e_1, e_2, e_3 } is a basis of R³.
 - Test the convergence of $5 \frac{10}{3} + \frac{20}{9} \frac{40}{27} + \dots + \dots$ (c)
- (a) Write the polynomial $V = t^2 + 4t 3$ as a linear combination of the polynomials Que-6 $e_1 = t^2 - 2t + 5$, $e_2 = 2t^2 - 3t$, $e_3 = t + 3$.
 - (b) Attempt any two
 - Determine wheather the following spans the vector space \mathbb{R}^3 . $V_1 = (3,1,4)$, $V_2 = (2, -3, 5), V_3 = (5, -2, 9)$ and $V_4 = (1, 4, -1)$
 - Check wheather the alternating series $\sum_{n=1}^{\infty} (-1)^n \frac{n+3}{n^2+2}$ is convergent or not ? Ii
 - For whoich value of k will the vecto = (1, k, 5) as a linear combination of vectors Iii $x_1 = (1, -3, 2)$ and $x_2 = (2, -1, 1)$

END OF PAPER

4

6

6