TOTAL MARKS-70

GANPAT UNIVERSITY B.TECH SEM. IIND (CE/IT/EC/BM) ENGINEERING CBCS REGULAR EXAMINATION MAY/JUNE - 2013 2ME101 ELEMENTS OF MECHANICAL ENGINEERING

TIME: - 3 HOURS

INSTRU	JCT.	 (1) All questions are computatively. (2) Assume suitable data if necessary. (3) Figure to the right indicates full marks. (4) Scientific calculator and steam table is allowed. 	
	×	SECTION - I	
Que1	a	0.5 kg of air at a pressure of 1.7 bar occupies 0.3 m ³ and from this condition is compressed to 16 bar according to the law $PV^{1.25} = C$. Calculate: (i) The change in internal energy of the air (ii) The workdone on or by the air. (iii) The heat received or rejected by the air.	05
	b c	Define prime movers. Describe the sources used by prime movers. Define heat and work. What are the different sign used for heat and work in	04 03
		practice.	
Que 1	9	Derive characteristic equation of perfect gas.	04
Que-1	b	Derive the following equations for Constant volume process with P-V diagram:	04
	C	 (1) Heat transfer (ii) Change in childrepy. 2000 m³ of water is to be delivered in 30 minutes to a vertical distance of 30 m. Determine the power required. Neglect friction and other losses. 	04
Que2	a	1 kg of air is taken through (i) Otto cycle (ii) Diesel cycle. Initially air is at 290 K and 1 bar. The compression ratio for both cycles is 12 and heat addition is 1900 kJ	06
	b	Explain the working and construction of the Throttling calorimeter.	05
Que2	a	Find the internal energy of 1 kg of steam at a pressure of 15 bar when: (i) The steam superheated with temperature of 400°C. (ii) The steam is wet with dryness fraction 0.9.	06
		Take $Cps = 2.1 \text{ kJ/kg K}$.	
	b	Derive an expression of air standard efficiency for Otto cycle with P-V diagram.	05
Que3	a	Attempt Any Three. Draw a neat sketch of water tube boiler with all details. List the all mountings and accessories used in this boiler. Classify the boiler in details.	12
	C	Differentiate between the following:	
U,	d	(i) Gas and Vapour (ii) Open system and Closed system. Enlist the various Liquid fuels. Write the merits and demerits over solid fuels.	

SECTION - II

Que4	a b	Explain the working of four stroke CI engine. The following readings were taken during the test on a single cylinder four stroke oil engine:	06 06
		Cylinder diameter is 270 mm, stroke length is 380 mm, mean effective pressure is 6 bar, engine speed 250 rpm, Net load on brake 1000 N, effective mean diameter of brake 1.5 m fuel used 10 kg/hr. C.V. of fuel is 44000 kJ/kg	
		Calculate: (i) Brake power (ii) Indicated power (iii) Mechanical efficiency (iv) Indicated thermal efficiency.	
		OR	
Que4	a	Give the difference between Two stroke and Four stroke engine.	04
	b	Write the function of following components:	04
		(i) Piston (ii) Crank shaft (iii) Carburetor (iv) Flywheel	
	c	A two stroke internal combustion engine has stroke length of 160 mm and cylinder	04
		bore 100 mm. Its mean effective pressure is 5.8 bar and speed of the engine is 1050	
		rpm. Determine brake power of the engine. Assume mechanical efficiency as 82%.	
Oue5	a	Air is to be compressed in a single stage reciprocating compressor from 1.013 bar	06
d Li		and 15°C to 7 bar. Calculate the indicated power required for a free delivery of 0.3 m^3/min . When the compression process is:	
		(i) Isentropic (ii) Reversible isothermal (iii) Polytropic with $n = 1.25$. Neglect	
		clearance.	
	b	Explain the working and construction of Hartnell governor.	05
Que5	a	Derive an expression of workdone of single cylinder reciprocating air compressor	06
		without considering the clearance volume.	00
	b	Classify centrifugal pump. Describe the volute type centrifugal pump.	05
One6		Attempt Any Three	12
Que-o	9	Give the difference between Individual drive and Group drive	14
	h	Explain the Vanour Compression Refrigeration Cycle with diagram	
	C	Give the details classification of Air Compressor	
	-	Site die details encontreation of An Compressor.	

d Enlist the types of Couplings. Explain any one with a neat sketch.

END OF PAPER

Page 2 of 2