Date: 18/05/2012,

GANPAT UNIVERSITY

B.Tech. Semester I & II (All Branch)

CBCS (New) Regular & Remedial Examination April-June 2017 2EC101: PHYSICS

Time: 3 Hrs.]

[Total Marks: 60

Instructions:

1. Attempt all questions.

- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data, if necessary.

SECTION-I

Q:1	(A)	Explain the formation of depletion layer and the barrier potential for an unbiased p-n junction diode.	5	
	(B)	Classify different types of magnetic materials with examples.	5	
		OR		
Q:1	(A)	Define the terms: Holes, Magnetic Susceptibility, Superconductivity, Curie Temperature, Doping	5	
	(B)	Explain the term Energy Hill for a p-n junction diode.	5	
Q:2	(A)	List out the main defects of the roentgen tube and explain the construction and working of Coolidge X-ray tube.	5	
	(B)	The magnetic field intensity in Hg at T= 0K is 4 x 10^5 /4 π A/m and 3.3×10^5 /4 π A/m at 3.2 K. Calculate the critical temperature.	5	
		OR		
Q:2	(A)	Explain the method to calculate the size of Nucleus with appropriate	5	
	(B)	examples. Superconducting lead has a critical temperature of 7.26 K at zero magnetic field and a critical magnetic field of 8 x 10 ⁵ A/m at 0K.	5	
		Find the critical field at 5 K.		
Q:3	(A)	List out the applications of superconductors.	5	
Q.5	(B)	Briefly explain the following:	5	
	(1)	(i) Nanotechnology and its application		
		(ii) Plasma and its types		

SECTION-II

Q:4	(A)	Explain how optical fibers are classified. Discuss their characteristics features	5
	(B)	A step index fiber has NA of 0.16, n_1 =1.45 and core diameter of 60 cm. Determine the normalized frequency if free space wavelength is 0.9 μ m. Also,	5
		find out no. of modes supported by fiber	
		OR	
Q:4	(A)	Define thermal conductivity. Compare conduction, convection and radiation of heat transfer mode.	5
	(B)	What is Doppler effect? Explain various cases of it when source and observer both are moving.	5
Q:5	(A)	Explain principle of spontaneous and stimulated emission.	5
	(B)	Define 1) Critical angle 2) Refractive index .3) Acceptance angle 4) LASER 5) Ultrasonic	5
		OR	
Q:5	(A)	A person is standing near railway track and train moving with a speed of 36km/hr is approaching him. The apparent pitch of the whistle as heard by the person is 700hertz. Calculate the actual frequency of the whistle. Velocity of sound = 350 m/s.	5
	(B)	Illustrate the nature of light. What are the various theories to explain the different laws?	5
Q:6	(A)	Explain intermodal, material and waveguide dispersion.	6
	(B)	Define attenuation. A certain optical fiber has an attenuation of 3.5dB/km at 850nm. If 0.5mW of	4
		optical power is initially launched in to the fiber, what is the power level in μ w	

End of Paper