Seat	No.	:

Total marks: 70

(12)

(12)

(8)

GANPAT UNIVERSITY

B.TECH. SEM.- III [B.M.&I.] EXAMINATION NOVEMBER - DECEMBER; 2010.

SUB: MATHEMATICS-II

Time: 3 hrs

Instruction: (1) All questions are compulsory.

- (2) Write answer of each section in separate answer books.
- (3) Figures to the right indicate marks of questions.

Section – I

Attempt any three. Question-1

If $f(x) = x + x^2$, $-\pi < x < \pi$, prove that (a) $f(x) = \frac{\pi^2}{3} - 4\left(\frac{\cos x}{1^2} - \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} - \cdots\right) + 2\left(\frac{\sin x}{1} - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \cdots\right)$

Find a Fourier series to represent if $f(x) = \begin{cases} -\pi, & 0 < x < \pi \\ x - \pi, & \pi < x < 2\pi \end{cases}$. Hence deduce (b) that: $\frac{\pi^2}{8} = \frac{1}{4^2} + \frac{1}{3^2} + \frac{1}{5^2} - \dots$

- Find the half range Cosine series for: $f(x) = (x-1)^2$; 0 < x < 1(c)
- Obtain Fourier series of $f(x) = e^{2x}$, $-\pi \le x \le \pi$ (d)

Attempt any three: Question-2

Define Laplace transform and using definition find $L\{f(t)\}$ if: (a)

$$f(t) = \begin{cases} 2 & , & 0 \le t < 4 \\ 1 & , & t > 4 \end{cases}$$

 $f(t) = \begin{cases} 2, & 0 \le t < 4 \\ 1, & t > 4 \end{cases}$ Find: (1). $L\left\{e^{-2t}(2t+1)\right\}$ (2). $L^{-1}\left\{\frac{s+1}{s^2-2s+3}\right\}$ (b)

- If $L\{f(t)\}=\bar{f}(s)$, prove that $L\{t.f(t)\}=-\frac{d f(s)}{ds}$. Hence evaluate $L\{t.\sin 2t\}$ (c)
- Using Laplace transform method solve: $\frac{d^2y}{dt^2} + y = t$; Where y(0) = 0, y'(0) = 1. (d)

(A) Attempt the following: **Ouestion-3**

Express the function $f(x) = \begin{cases} -e^{2x} & x < 0 \\ e^{-2x} & x > 0 \end{cases}$ as Fourier integral and hence prove that (a)

$$\int_{0}^{\infty} \frac{\lambda \cdot \sin \lambda x}{\lambda^{2} + 2^{2}} d\lambda = \frac{\pi}{2} e^{-2x} \quad \text{if } x > 0$$

Express e^{-x} , $x \ge 0$ as Fourier sine transform and hence deduce that (b)

$$\int_0^\infty \frac{x \cdot \sin mx}{1+x^2} \, dx = \frac{\pi}{2} e^{-m}$$

(3) State Convolution theorem and using it find $L^{-1}\left\{\frac{s}{(s-3)(s^2+1)}\right\}$ (B)

Section - II

- 4 (A) Prove that $\sinh z$ is an analytic function of the variable z = x + iy. (03)
 - (B) Attempt any two:
 - (1) Find the analytic function whose real part is $x^2 y^2$.
 - (2) Find the Bilinear transformation which maps the points z = -1, i, 1 onto the points w = 1, i, -1.
 - (3) Prove that $\int_{c} \frac{dz}{z-a} dz = 2\pi i$; where c is the circle |z-a| = r
- 5 Attempt any three: (12)
 - (A) State and Prove Cauchy's theorem.
 - **(B)** Evaluate $\int_{c}^{c} \frac{e^{2z}}{(z-1)(z-2)} dz$ where c is the circle |z| = 3.
 - (C) Evaluate $\int_{0}^{6} \frac{dx}{1+x^2} dx$ with h=1 by using Trapezoidal rule.
 - (D) Find the real root of $f(x) = x^3 3x 5 = 0$ between 2 and 3 by Bisection method correct up to two decimal places.
- 6 Attempt any three: (12)
 - (A) Find the real root of $f(x) = x^3 2x 5 = 0$ between 2 and 3 by false position method correct up to three decimal places.
 - (B) Find $(701)^{\frac{1}{3}}$ correct up to two decimal places by Newton-Raphson method.
 - (C) Obtain Picard's Second approximate solution of $\frac{dy}{dx} = x y^2$ for x = 0.1 correct up to four decimal places with y(0) = 1.
 - (D) Apply Runge-kutta method to find an approximate value of y at x = 0.1 with h = 0.1 given that $\frac{dy}{dx} = x + y^2$ and y = 1 when x = 0.