Seat	No.
------	-----

GANPAT UNIVERSITY B.Tech. (B.M.&I.) Sem-III

SUBJECT: 2HS301 Mathematics – III-Theory CBCS Regular Examination Nov-Dec 2013.

TIME: - 3 HOURS INSTRUCTIONS:

TOTAL MARKS: 70

- 1. All questions are compulsory.
- 2. Write answer of each section in separate answer books.
- 3. Figures to the right indicate marks of questions.

SECTION - I

Que-1 Answer the following.

(12)

- [A] Determine the function $\frac{x}{x^2 + y^2} + i \frac{y}{x^2 + y^2}$ is an analytic function or not.
- [B] If f(z) = u + iv is an analytic function of z then find f(z) where $u v = \frac{\cos x + \sin x e^{-y}}{2\cos x e^{y} e^{-y}}$
- [C] If f(z) is an analytic function of z then prove that $\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right] |f(z)|^2 = 4 |f'(z)|^2$.

OR

Que-1 Answer the following.

(12)

- [A] Prove that the function $\frac{x-iy}{x^2+y^2}$ is an analytic function.
- [B] Find an analytic function w = u + iv; given that $v = \frac{x}{x^2 + y^2} + \cosh x \cos y$
- [C] If f(z) is an analytic function with constant modulus; then show that f(z) is constant.

Que-2 Answer the following.

[A] State & Prove Cauchy's theorem.

(03)

- [B] Evaluate: $\int_{0}^{2+i} (\overline{Z})^2 dz$; along the real axis to 2 and the vertically to 2+i. (04)
- [C] Evaluate: $\int_{c}^{e^{2z}} \frac{e^{2z}}{(z-1)(z-2)} dz$; where c is the circle: |z| = 3. (04)

OR

Que-2 Answer the following.

- [A] Prove that $\int_{C} \frac{dz}{z-a} = 2\pi i$; where c is the circle |z-a| = r. (03)
- [B] Evaluate: $\int_{0}^{1+i} \left(x^2 + iy\right) dz$; along the path $y = x^2$. (04)
- [C] Evaluate: $\int_{c}^{c} \frac{e^{2z}}{(z+1)^4} dz$; where c is the circle |z|=2. (04)

Que-3	Attempt any three:										
[A]	Expand: $f(z) = \frac{1}{z}$ as a Taylor's series about the point $z = 1$.										
[B]	Find the Bilinear transformation which maps the points $z = 1, i, -1$ in to the points $w = 0, 1, \infty$ respectively.										
[C]	Expand: $\frac{1}{z(z^2-3z+2)}$ for the regions (1) $0 < z < 1$ and (2) $1 < z < 2$.										
[D]	Find the Bilinear transformation which maps the points $z = 1, i, -1$ in to the points $w = i, 0, -i$ respectively.										
				SECTIO	<u>N – II</u>		MIN S				
Que4	Attempt the following:										
(A)	Find a real root of equation $2x - \log_{10} x = 7$ using self iteration method correct to four decimal places.										
(B)	Using convolution theorem, evaluate $L^{-1}\left\{\frac{1}{(s+1)(s^2+1)}\right\}$.										
(C)	Expand $f(x)$ as Fourier series in the interval $-\pi \le x \le \pi$ if $f(x) = e^{ax}$										
(A)	Apply Jacobi's iteration method to solve the equations $20x + y - 2z = 17$, $3x + 20y - z = -18$, $2x - 3y + 20z = 25$										
(B)	If $L\{f(t)\} = \bar{f}(s)$ then prove that $L\{t^n f(t)\} = (-1)^n \frac{d^n}{ds^n} \bar{f}(s), n = 1,2,3,$										
(C)	Find the Fourier series of $f(x) = \begin{cases} \pi x & 0 \le x \le 1 \\ \pi(2-x), 1 \le x \le 2 \end{cases}$										
Que5	Attempt the following: (11										
(A)	Given that					anitot			(4)		
	x	1	1.1	1.2	1.3	1.4	1.5	1.6			
	<i>y</i> , dy	7.989	8.403	8,781	9.129	9.451	9.75	10.031			
(T)	-	$d\frac{d^2y}{dx^2}$ at $x =$	45.00								
(B)	Evaluate $L^{-1}\left\{\log\frac{s^2+1}{s(s+1)}\right\}$ (4)										
(C)	Find Fourier series of $f(x) = x \sin x$ in $-\pi \le x \le \pi$ (3)										
(4)	Portsonaura Cauchy's theorem OR										
(A)	Use Simpson's $3/8^{th}$ rule to find $\int_0^6 \frac{1}{1+x^2} dx$ where step size is 1.										
(B)	Solve $y'' + y = t$ by Laplace transform method where $y(\pi) = 0$, $y'(0) = 1$										
(C)	Obtain a Fourier series for $f(x) = \begin{cases} -1, -\pi < x < 0 \\ 1, 0 < x < \pi \end{cases}$										
Que6	Attempt any three:										
(A)	Find the Fourier integral representation of function $f(x) = \begin{cases} 1, x < 1 \\ 0, x > 1 \end{cases}$										
(B)	Find the Fourier integral representation of function $f(x) = \begin{cases} -e^{kx}, & x < 0 \\ e^{-kx}, & x > 0 \end{cases}$										

END OF PAPER

Evaluate (1) $L\left\{\frac{\cos at - \cos bt}{t}\right\}$ (2) $L\left\{t e^{2t} \cos 3t\right\}$

Find half range Fourier cosine series $f(x) = \begin{cases} 1, 0 \le x \le 1 \\ x, 1 \le x \le 2 \end{cases}$