Ganpat University ## B. Tech Semester – III (BM&I)Regular Examination Nov – Dec – 2014 Subject : (2HS 301) Mathematic – III Time: 3 hrs. Marks: 70 - 1. All questions are compulsory. - 2. Write answer of each section in separate answer books. - 3. Figures to the right indicate marks of questions. ## Section - I Que: 1 (A) If $$L\{f(t)\} = \overline{f}(s)$$ then Prove that $L\left\{\int_{0}^{t} f(u) du\right\} = \frac{\overline{f}(s)}{s}$ [4] (B) Find: (1) L { $$e^{-3t}(\cos 4t + \sin 4t)$$ } (2) L { $\frac{\cos at - \cos bt}{t}$ } [4] (C) Find $$L^{-1}\left\{\log\left(\frac{s-2}{s+3}\right)\right\}$$ Que: 1 (A) Find (1) L {tcosat} (2) L⁻¹ $$\left\{\frac{s+7}{s^2+2s+2}\right\}$$ [4] (B) State Convolution theorem and apply it to evaluate $$L^{-1}\left\{\frac{1}{s^2(s-1)}\right\}$$ [4] (C) Solve: $$\frac{d^2y}{dt^2} + 4y = \sin t$$; where $y(0) = 1$, $y'(0) = 0$ [4] Que: 2 (A) Find a Fourier series for the function $$f(x) = x + x^2$$; $[-\pi, \pi]$ [3] Hence show that $\frac{\pi^2}{6} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$ (B) Obtain a Fourier series for the $$f^{ns}$$ $f(x)$ defined as $$f(x) = \begin{cases} -x & ; & -\pi \le x \le 0 \\ x & ; & 0 \le x \le \pi \end{cases}$$ (C) Find a Fourier series for the $$f^{ns}$$ $f(x) = 1 + \sin x$; $[-1,1]$ [4] OR Que: 2 (A) Expand $$f(x) = e^{-x}$$ as a Fourier series for : $-L < x < L$ [3] (B) Find the fourier expansion of $$f(x) = x^2 - 2$$; $-2 \le x \le 2$ [4] Obtain the Half range Cosine series for the fns f(x) defined as (C) 4 $$f(x) = \begin{cases} 0 ; 0 \le x \le \pi/2 \\ \pi/2 ; \pi/2 \le x \le \pi \end{cases}$$ Hence show that $\frac{\pi}{4} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$ **Attempt any Three** Oue: 3 (A) Find the Fourier transform of $$f(x) = \begin{cases} 1-x^2 ; |x| < 1 \\ 0 ; |x| > 1 \end{cases}$$ [4] (B) Find the Fourier Sine transform of : $$f(x) = \begin{cases} 1 & 0 < x < a \\ 0 & x > a \end{cases}$$ [4] (C) Find: $$L^{-1}\left\{\frac{2s^2-4}{(s+1)(s-2)(s-3)}\right\}$$ [4] $$f(x) = \begin{cases} 1 + x ; -1 \le x \le 0 \\ 1 - x ; 0 \le x \le 1 \end{cases}$$ ## Section - II Que: 4 (A) Check the analyticity of (i) $$f(z) = \overline{z}$$ (ii) $f(z) = e^z$ [4] (B) If $$w = T_1(z) = \frac{z-2}{z+3}$$ & $w = T_2(z) = \frac{z}{z+2}$ then find T_1^{-1} , T_2^{-1} , $T_1 \cdot T_2 \cdot T_2 \cdot T_1$ [4] (C) Determine the analytic function whose real part is $$\cos x \cdot \cos hy$$ [4] Que: 4 (A) Evaluate $$\oint \frac{\cos \pi z + \sin \pi z}{(z-1)(z-2)} dz \text{ where C: } |z| = 3$$ [4] (B) Evaluate $$\int [(x + y)dx + x^2y dy]$$ along $y = 3x$ between $(0,0)$ and $(3,9)$ [4] Que: 5 (A) Obtain Laurent's series for $$f(z) = \frac{1}{(z+3)(z+1)}$$ in (i) $|z| < 1$ (ii) $1 < |z| < 3$ [4] Page 2 of 3 | | | | | | | | | Description of weathing the second | | | |--------|--|-----------|----------|------------|--|-------|-------|------------------------------------|--|-----------| | (B) | Calculate $\left(\frac{dy}{dx}\right)_{x=1.5}$ for the following data. | | | | | | | | | [4 | | | X | 1 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | | | | | у | 7.989 | 8.403 | 8.781 | 9.129 | 9.451 | 9.750 | 10.031 | | | | (C) | Solve: $2x + y + z = 10$, $3x + 2y + 3z = 18$, $x + 4y + 9z = 16$ by Gauss | | | | | | | | | | | (6) | | ination m | | , on 1 = j | le compression de la compression de la
La compression de la compression de la
La compression de la | | | | | Marie III | | | CIIII | mationin | ietilou. | | | OR | | | | | | Que: 5 | | | | | | | | | | | | (4) | State and prove Cauchy Residue theorem and find it for $f(z) = \frac{z^2 + 1}{z^2 - 2z}$ | | | | | | | | | | | (A) | | | | | | | | | | | | (B) | State and prove maximum modulus thorem. | Que: 6 | | mpt any | | | | | | | | | | (A) | Using Bisection method find real root of $x^3 - 4x - 9 = 0$ in (2,3) upto fourth | | | | | | | | | | | | | oximatio | | | | | | | | | | (B) | Apply False position Method to find real root of $x^3 - 2x - 5 = 0$ in (2, 3) | | | | | | | | | | | | correct up to two decimal places. | | | | | | | | | | | (C) | Evaluate $\sqrt{28}$ in (5, 6) correct upto three decimal places using N – R Method. | | | | | | | | | | **End of Paper** Evalute $\int_{0}^{1} x^{2} dx$; with h = 0.2 using Simpson's one – third rule. (**D**) [4]