Ganpat University

B. Tech Semester – III (BM&I)Regular Examination Nov – Dec – 2014 Subject : (2HS 301) Mathematic – III

Time: 3 hrs.

Marks: 70

- 1. All questions are compulsory.
- 2. Write answer of each section in separate answer books.
- 3. Figures to the right indicate marks of questions.

Section - I

Que: 1

(A) If
$$L\{f(t)\} = \overline{f}(s)$$
 then Prove that $L\left\{\int_{0}^{t} f(u) du\right\} = \frac{\overline{f}(s)}{s}$ [4]

(B) Find: (1) L {
$$e^{-3t}(\cos 4t + \sin 4t)$$
 } (2) L { $\frac{\cos at - \cos bt}{t}$ } [4]

(C) Find
$$L^{-1}\left\{\log\left(\frac{s-2}{s+3}\right)\right\}$$

Que: 1

(A) Find (1) L {tcosat} (2) L⁻¹
$$\left\{\frac{s+7}{s^2+2s+2}\right\}$$
 [4]

(B) State Convolution theorem and apply it to evaluate
$$L^{-1}\left\{\frac{1}{s^2(s-1)}\right\}$$
 [4]

(C) Solve:
$$\frac{d^2y}{dt^2} + 4y = \sin t$$
; where $y(0) = 1$, $y'(0) = 0$ [4]

Que: 2

(A) Find a Fourier series for the function
$$f(x) = x + x^2$$
; $[-\pi, \pi]$ [3]
Hence show that $\frac{\pi^2}{6} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$

(B) Obtain a Fourier series for the
$$f^{ns}$$
 $f(x)$ defined as
$$f(x) = \begin{cases} -x & ; & -\pi \le x \le 0 \\ x & ; & 0 \le x \le \pi \end{cases}$$

(C) Find a Fourier series for the
$$f^{ns}$$
 $f(x) = 1 + \sin x$; $[-1,1]$ [4]

OR

Que: 2

(A) Expand
$$f(x) = e^{-x}$$
 as a Fourier series for : $-L < x < L$

[3]

(B) Find the fourier expansion of
$$f(x) = x^2 - 2$$
; $-2 \le x \le 2$

[4]

Obtain the Half range Cosine series for the fns f(x) defined as (C)

4

$$f(x) = \begin{cases} 0 ; 0 \le x \le \pi/2 \\ \pi/2 ; \pi/2 \le x \le \pi \end{cases}$$

Hence show that $\frac{\pi}{4} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$

Attempt any Three Oue: 3

(A) Find the Fourier transform of
$$f(x) = \begin{cases} 1-x^2 ; |x| < 1 \\ 0 ; |x| > 1 \end{cases}$$
 [4]

(B) Find the Fourier Sine transform of :
$$f(x) = \begin{cases} 1 & 0 < x < a \\ 0 & x > a \end{cases}$$
 [4]

(C) Find:
$$L^{-1}\left\{\frac{2s^2-4}{(s+1)(s-2)(s-3)}\right\}$$
 [4]

$$f(x) = \begin{cases} 1 + x ; -1 \le x \le 0 \\ 1 - x ; 0 \le x \le 1 \end{cases}$$

Section - II

Que: 4

(A) Check the analyticity of (i)
$$f(z) = \overline{z}$$
 (ii) $f(z) = e^z$ [4]

(B) If
$$w = T_1(z) = \frac{z-2}{z+3}$$
 & $w = T_2(z) = \frac{z}{z+2}$ then find T_1^{-1} , T_2^{-1} , $T_1 \cdot T_2 \cdot T_2 \cdot T_1$ [4]

(C) Determine the analytic function whose real part is
$$\cos x \cdot \cos hy$$
 [4]

Que: 4

(A) Evaluate
$$\oint \frac{\cos \pi z + \sin \pi z}{(z-1)(z-2)} dz \text{ where C: } |z| = 3$$
 [4]

(B) Evaluate
$$\int [(x + y)dx + x^2y dy]$$
 along $y = 3x$ between $(0,0)$ and $(3,9)$ [4]

Que: 5

(A) Obtain Laurent's series for
$$f(z) = \frac{1}{(z+3)(z+1)}$$
 in (i) $|z| < 1$ (ii) $1 < |z| < 3$ [4]

Page 2 of 3

								Description of weathing the second		
(B)	Calculate $\left(\frac{dy}{dx}\right)_{x=1.5}$ for the following data.									[4
	X	1	1.1	1.2	1.3	1.4	1.5	1.6		
	у	7.989	8.403	8.781	9.129	9.451	9.750	10.031		
(C)	Solve: $2x + y + z = 10$, $3x + 2y + 3z = 18$, $x + 4y + 9z = 16$ by Gauss									
(6)		ination m		, on 1 = j	le compression de la compression de la La compression de la compression de la La compression de la					Marie III
	CIIII	mationin	ietilou.			OR				
Que: 5										
(4)	State and prove Cauchy Residue theorem and find it for $f(z) = \frac{z^2 + 1}{z^2 - 2z}$									
(A)										
(B)	State and prove maximum modulus thorem.									
Que: 6		mpt any								
(A)	Using Bisection method find real root of $x^3 - 4x - 9 = 0$ in (2,3) upto fourth									
		oximatio								
(B)	Apply False position Method to find real root of $x^3 - 2x - 5 = 0$ in (2, 3)									
	correct up to two decimal places.									
(C)	Evaluate $\sqrt{28}$ in (5, 6) correct upto three decimal places using N – R Method.									

End of Paper

Evalute $\int_{0}^{1} x^{2} dx$; with h = 0.2 using Simpson's one – third rule.

(**D**)

[4]