STUDENT EXAM NO.:_

TOTAL MARKS: 70

GANPAT UNIVERSITY

B.TECH SEM.JY BIOMEDICAL & INSTRUMENTATION ENGINEERING **CBCS REGULAR EXAMINATION MAY/JUNE - 2014 2BM401 - ANALOG INTEGRATED ELECTRONICS**

TIME: 3 HOURS

INSTRUCTION:

- 1. Write each section in separate answer books.
- 2. All questions are compulsory.
- 3. Draw figures and assume data wherever necessary.
- 4. Conventional terms / notations are used.
- 5. Figure to the right indicate marks.

Section - I

0.1

- Define IC. Differentiate between Analog and Digital IC's. Classify IC's based on scale of a) integration.
- Enlist and Describe different configurations of transistor based differential amplifier. What do b) you mean by single ended mode, double ended mode and common mode operation
- Explain OP-AMP electrical properties: 1) input offset voltage ratio 2) output voltage swing c)

OR

- Q.1
- Define OP-AMP. Draw and explain typical OP-AMP Block diagram. Explain schematic a) symbol and pin diagram µA 741.
- Derive following equation for closed loop Non-inverting amplifier given below. Describe **b**) voltage follower circuit with related equations. $2] A_{F} = \frac{A}{1 + AB}$

 $1] A_F = 1 + \frac{R_F}{R_T}$

[11]

[11]

- Q.2 How OP-AMPs can be used as AC inverting and non-inverting amplifier. In inverting a) amplifier circuit if Rin = 50 Ω , Ci = 0.1 μ F, R₁ = 100 Ω , R_F = 1K Ω , R_L = 10K Ω . Vs = ± 15 V. Determine amplifier Bandwidth. Assume K = 0.909, UGB = 1 MHz
- Explain how differential configuration of OP-AMP can be used as subs-tractor and summing b) amplifier with output voltage equations

OR

- Q.2 a)
 - Describe instrumentation amplifier circuit operation using R_G resistor and obtain its output voltage gain equation. Enumerate its industrial applications
- Derive output voltage equation of Integrator and explain its frequency response. Draw the b) output waveform if input is sine and square wave.

[12]

[12]

		[12]
Q.3	Write shot note on (Any three)	
a) -	Sample and hold circuit	
b)	logarithmic Amplifier	
c)	Peak Detector	
d)	Zero crossing Detector	
	Section – TI	
04		[12]
Q.4	Explain Voltage Control Oscillator with neat diagram.	
a).	Draw and explain A stable Multivibrator in detail.	
D)	OR	
0.4		
2.4	Evaluin Schmitt trigger with necessary diagrams.	
a).	Design DC share shift oscillator for 2kHz frequency.	
D).	Design KC phase shint osemator for 2mm acquires	
05		[11]
Q.5	Draw and explain Notch filter. Also design notch filter for 60 Hz frequency.	
2). b)	Draw and explain high level modulator AM transmitter in detail.	
D).	OR	
05	when the and by single ended mode, do not	[11]
0.5	Write a short note on voltage regulator.	
a).	Design narrow hand pass filter so that the center frequency $f_c = 1.5$ kHz, figure of merit Q= 3,	
DJ.	$C_{sin} = 11$ Change the center frequency $f_c = 2$ kHz keeping the gain and bandwidth constant.	
	Gain – 11. Change the center hequency 1 c = 1 = 1 c = c	
		[12]
Q.6	Define Eilter Give elessification of filter. What are the advantages of active filter over	
a).	Denne: Filter. Give classification of filter	63
	passive inter write application of inter.	
b).	Explain operating principle of PLL with necessary diagram. of it What is modulation?	
c).	Define: communication system. Explain basic block diagram of it. What is mountained	
	What is the need of modulation?	

--END OF PAPER-----