Evning Docte: - 1/12/2014.

Student Exam No:

GANPAT UNIVERSITY B.Tech. Semester V (BM&I) Regular Examinations Nov/ Dec 2014 2BM 505 Cardiovascular System and Dynamics

Time: - 3 Hours

Marks:-70

Instructions:

- 1. Answer to the questions must be written in separate answer books.
- 2. Figure to the right indicate marks.
- 3. Assume data, if needed.
- 4. Conventional terms / notations are used.
- 5. All the questions are compulsory.

SECTION-I

Q.1		
•	(a) Explain "Power Law Constitutive model for Blood".	[6]
	(b) Derive the expression for Newton's law of Viscosity.	[6]
	OR	
Q.1		147
	(a) Write a short note on Pulsatile flow in elastic channel.	[4]
	(b) Define blood and write a short note on 'Blood Hematology'.	[8]
Q.2		
101	(a) Explain the following terms.	[6]
	I. Pseudo plasticity	
	II. Deformation	
	III. Non Newtonian fluid	
	(b) Write a short note on Wind kessel model.	[5]

OR

Q.2

Q.:

(a) Describe the Poiseulli's law and its significance in different blood [6] vessels.

(b) What is Reynolds number? Calculate the Reynolds number in human [5] aorta at rest with a cardiac output of 6 litre/min. Based on the reynold number, define the type of blood flow. (Given: Diameter of aorta is 2.5 cm, blood density is 1.07 gm/cm³ and viscosity is 0.04 Pa.s)

Q.3 Answer the following:

Q.4

Q.4

Q.5

(a) Derived the generalized Bernoulli's equation for pressure and flow in [6] blood vessel. Explain its physiological and clinical relevance. (b) What is cardiovascular systems & dynamics? Discuss the scope of the [6] subject.

SECTION-II

(a) What is laminar flow and turbulent flow? How does laminar flow turn [6] to turbulent flow? Explain the importance of laminar flow. (b) Draw and explain the pressure variations in the systemic circulation. [6] OR (a) Explain the mechanical events in cardiac cycle. [6] (b) Write a short note on hemodynamic in vascular channel. [6]

(a) Define shear stress and shear strain of human blood.	[6]
(b) What is Strouhal number? Derive the equation for kinetic reynold	[5]
number.	

OR

Q.5	(a) Define the stenosis. Explain with diagram the effect of aortic stenosis on P-V loop of left ventricle.	[5]
	 (b) Explain the following terms: i. Viscosity ii. Bingham Plasticity iii. Dicrotic notch 	[6]
Q.6	Answer the following: (a) For one complete cardiac cycle of heart, explain electrical impulse conduction system with diagram.	[6]

(b) Draw and explain the ECG waveforms for different heart related [6] diseases.

END OF PAPER-