GANPAT UNIVERSITY

B.Tech. Semester -V BIOMEDICAL & INSTRUMENTATION ENGINEERING **REGULAR EXAMINATION NOV – DEC 2011.** BME 505: BIOLOGICAL DIGITAL SIGNAL PROCESSING

Time:- 3 Hours

Total Marks:-70

Instructions:

- 1. Answer to the questions must be written in separate answer books.
- 2. Figure to the right indicate marks.
- 3. Conventional terms / notations are used.
- 4. All the questions are compulsory.

SECTION I

Que.1

- Discuss Sampling Theorem & Aliasing effect in detail. A. The analog signal is given x (t) = $7\cos 250\Pi t + 3\sin 650\Pi t$. Calculate:
 - Nyquist Sampling rate
 - If the given x (t) is sampled at the rate fs = 750Hz. What is the discrete time signal obtained after sampling? & Draw the Aliasing effect.
- Define LTI system. & derive equation for Convolution Sum. Find out **B**. $Y(n)=x(n)*h(n), h(n)=\{1, 2, 1\}, x(n) = \{-1, 2, 0, 1\}$ by mathematical method.

Que.1

The analog signal is given x (t) =7sin250IIt+3sin600IIt+4sin350IIt. Calculate: A.

OR

- 1. Nyquist Sampling rate?
 - 2. If the given x(t) is sampled at the rate fs =500Hz. What is the discrete time signal obtained after sampling?
 - 3. What is analog signal y (t) we can reconstruct from the samples if ideal interpolation method is used.

& also write the MATLAB program for sub-question 1 & 2.

Perform convolution of h (n) = $\{2, 3, 0, 1\}$ & x (n) = $\{1, -2, 3\}$ by graphical method. **B**. T

& also discuss the properties of convolution by taking any example using graphical method.

Que.2

- What are the advantages of digital filter & enlist the types of it. Derive Impulse A. response of an ideal Low Pass filter.
- Obtain requirements of FIR Low pass filter to meet the following specifications B. given below using Kaiser window. & write the program for it:

Pass band edge frequency	: 1.8 KHz	Stop band attenuation :>40 dB
Pass band attenuation	: 0,01 dB	Stop band edge frequency : 2.2 KHz
Sampling rate	:08KHz	
Perform cross correlation of	$f y(n) = \{-2, 1\}$	$1, 0, 1\} \& x (n) = \{1, -2, -1, 2\}.$

OR

12

12

11

- A. Derive Z-transform of Recursive system & Non-recursive system
- B. Design a IIR Band pass filter is to be designed to meet the following specifications:
 - Pass band edge frequency : 0.26-0.30(normalized)
 - Transition width : 0.03(normalized)

Stop band deviation: 0.001Pass band deviation: 0.04

i) Sketch tolerance scheme for filter.

ii) Express the filter band edge frequencies in standard unit of KHz, and stop band & pass band attenuation. Taking Fs=7.5 KHz

C. Obtain co-efficient of FIR High pass filter to meet the following specifications given below the window:

Pass	band	edge	frequency:	1.5	KHz	
Stop	band	edge	frequency:	2.1	KHz	

Stop band attenuation : >45 dB Sampling rate : 0.115msec.

Que.3

12

6

5

4

3

A. Write the recursive equation of IIR filter & Using Pole-Zero placement method to calculate co-efficient of a notch filter. Obtain the transfer function of a notch filter Notch frequency : 50Hz

A 3dB width of notch : 12Hz Sampling period : 0.001sec.

B. Represent 2nd order IIR filter by suitable structure & Obtain co-efficient of IIR Band stop filter using BZT method:

nere,	H(s) = 1/(s+1)	and a state
	Pass band	: 200-300 Hz
	Sampling rate	: 2000Hz

Section-II

Que.-4

WI

- A. Enlist the standard test signals & explain each in briefly.
- B. Determine the following systems are causal or non causal, time variant or time 6 invariant, linear or non linear:
 i.)y[n]=x[2-n], ii)y[n]=7x[n]+5,

OR

Que.-4

A. Differentiate between symmetric & anti symmetric signal. & also derive the equation for even & odd part of the signal x (t).

B. What you understand by invertibility? Explain in brief.

Explain the steps to find out the system is 'Linear 'or 'Non Linear'.

Page 2 of 3

Que.-5

Lac. 2			
	Α.	Find the linear convolution using DFT method of sequence $x(n)=\{1,2,3,0\}$,	7
		$h(n) = \{2, 1, 0, 0\}.$	
	B.	Find out the DFT of signal $x(n) = \{0, 1, 2, 3\}$.	4
		OR	
Que5			
	A.	Determine the IDFT by matrix method of given sequence $X[k] = \{2, 1+j, 0, 1-j\}$	4
	B.	Determine the circular convolution of sequence	5
		x(n) = 1 $n=0$ $h(n)=0.5$ $n=0$	
		=0.5 n=1 = 1 n=1	
		=0 elsewhere $=0$ elsewhere	
	C.	What is twiddle factor? Compute the value of W_8^2 , W_8^{11} .	2
			R
Que6		Attempt any two:	12
	Α.	for a given sequence perform following operations by matrix method:	
		$x(n) = \{2,0,0,1\}, y(n) = \{4,3,2,1\}$	
		i) Find 4 point DFT of x(n)	
		ii) Find 4 point DFT of h(n)	

- Perform Y[k]=X[k].Y[k]. iii)
- iv) Find IDFT of Y[k].

= 0

B. Find the Z transform of second order recursive filter whose impulse response $h[n] = r^n \cos[w_0 n] \quad n \ge 0$

elsewhere

C. Calculate even and odd part of given signal x(t) shown in fig.1

Fig(1)

END OF PAPER