Student Exam No:

GANPAT UNIVERSITY

B.Tech. Semester V (BM&I) Regular Examinations Nov/ Dec 2013 2BM 505 Cardiovascular System and Dynamics

Time:- 3 Hours

Marks:- 70

Instructions:

Q

- 1. Answer to the questions must be written in separate answer books.
- 2. Figure to the right indicate marks.
- 3. Assume data, if needed.
- 4. Conventional terms / notations are used.
- 5. All the questions are compulsory.

SECTION-I

Q.1		:
	(a) Define blood and write a short note on 'Blood Hematology'.	[6]
	(b) Derive the expression for Newton's law of Viscosity.	[6]
Q.1	OR	
	(a) Write a short note on Pulsatile flow in elastic channel.	[3]
	(b) What do you understand by Constitutive modelling? Give and explain "Power Law Constitutive model for Blood".	[5]
	 (c) Define the following terms: i) Rigidity ii) Pseudo plasticity iii) Deformation 	[4]
Q.2	iv) Non Newtonian fluid	. t.9
	(a) Draw and explain the pressure variations in the systemic circulation.	[5]
	(b) Write a short note on Wind kessel model.	[4]
	(c) Discuss Strouhal number.	[2]

OR

Page 1 of 3

. ;

Q.2

(a) Derived the generalized Bernoulli's equation for pressure and flow in blood vessel. Explain its physiological and clinical relevance.

161

[5]

[2]

[4]

(b) What is Reynolds number? Calculate the Reynolds number in human aorta at rest with a cardiac output of 5 litre/min. Based on the reynold number, define the type of blood flow. (Given: Diameter of aorta is 3 cm, blood density is 1.06 gm/cm^3 and viscosity is 0.035 Pa.s)

Q.3 Answer the following:

(a) Describe the Poiseulli's law and its significance in different blood [6] vessels.

(b) What is cardiovascular systems & dynamics? Discuss the scope of the [6] subject. And give the applications of this subject.

SECTION-II

Q.4

(a) What is laminar flow and turbulent flow? How does laminar flow turn [6] to turbulent flow? Explain the importance of turbulent flow.

(b) Consider a red blood cell of maximum dimension 7.5 μ m and a volume [4] of 90 μ m³. What should be the hematocrit of blood, if each cell were completely free to spin around itself in any direction without interference from a neighboring cell? Assume a face centered cubic packing factor.

(c) Define the following terms. i) Newtonian fluid ii) Mechanics

OR

Q.4

- (a) Describe the mechanical event in cardiac cycle. Correlate the electrical [8] and mechanical events in the heart.
- (b) Write a short note on hemodynamic in vascular channel.

Q.5

(a) For cardiovascular system discuss the laws of conservation of mass, [6] energy and momentum.

(b) Describe the Compliance and Elastance in reference to artificial blood [5] vessel graft.

OR

Q.5

(a) Calculate the Kinetic Reynold's number at the root of the aorta for a 100 beats per minute heart rate.

[5]

[6]

- (b) Explain the following terms:
 - i. Viscosity

ii. Bingham Plasticity

iii. Dicrotic notch

Q.6 Answer the following:

(a) For one complete cardiac cycle of heart explain electrical impulse [6] conduction system with diagram.

(b) Define the stenosis. Explain with diagram the effect of Mitral stenosis [6] on P-V loop of left ventricle.

----END OF PAPER----