Student Exam No.

Regular ExaminationNOV-DEC2014 2BM502: ELECTRONICS MEASUREMENT AND INSTRUMENTATION

B. Tech. SemesterVth Biomedical and Instrumentation Engineering

GANPAT UNIVERSITY

Time:3 Hours

Total Marks: 70

6

12

6

5

7

- Instructions:
- 1. Answer to the each sections must be written in separate answer books.
- 2. Figure to the right indicate marks.
- 3. Conventional terms / notations are used.
- 4. All the questions are compulsory.

Section - I

Que. - 1

- (a) Derive equation for deflection factor G and sensitivity for deflection 6 system of CRO.
- (b) Explain designing of amultirange voltmeters?

OR

Que. -1 Answer the Following questions(any six)

- i Mention the basic requirements of measurement?
- ii Give the applications of measurement systems.
- iii Explain the calibration procedure.
- iv How the range of instrument can be extended in PMMC instruments?
- v List any four characteristics of measuring system.
- vi Define vertical and horizontal amplifier.
- vii What are the advantages of electronic voltmeter?

Que. - 2

- (a) Explain the operation and working of D'arsonval meter.
- (b) How measurements done using the CRO?

Que. - 2

(a)

(b)

OR

Explain Galvanometer in detail.6Explain in detail measurement of phase using lissajous patterns.5

Que. - 3

(a)

A PMMC instrument has a three-resistor Ayrton shunt connected across it to make an ammeter as shown in below figure. The resistance values are R1 = 0.05Ω , R2 = 0.45Ω and R3 = 4.5Ω . The meter has Rm = $1k\Omega$ and FSD = 50μ A. Calculate the three ranges of the ammeter.

(b) $(R_1 + R_2)$ in parallel with $(R_m + R_3)$

(b) A PMMC instrument has FSD of 100 μ A and a coil resistance of 1 k Ω . Calculate the required shunt resistance value to convert the instrument into an ammeter with (a) FSD = 100 mA and (b) FSD = 1A

Section - II

Oue 4			6
	(a)	Write short note on hierarchical FDIVI.	6
	(b)	Write short note on Q meter.	
	(-)	OR	
Que. – 4			6
	(a)	Write short not on square wave generator	6
	(b)	Draw and explain basic block diagram of CRO.	U
Que 5		1. statene bridge	6
	(a)	Write short note on wheatstone bridge.	5
	(b)	Explain designing of AC voltmeter using half wave recurren	
	(~)	OR	
Que 5		TDM in detail	6
	(a)	What is TDM.Explain synchronous 1 Divi in doum.	5
	(b)	Describe in detail types of A to D converters.	
ALCONOMIC AND A			

6

6

Que. - 6 Answer the Following questions(any six)

- i List the basic types of C.R.O
- ii State the advantages of inverted R-2R ladder D/A converter.

12

- iii What is sampling oscilloscope?
- iv Define rise time and fall time of a pulse
- v What are the types of wave analyser?
- vi List the important features of instrumentation amplifier
- vii What are the objectives of DAS?

END OF PAPER