(12)

(12)

TOTAL MARKS: 70

GANPAT UNIVERSITY

B.Tech. (C.E/I.T.) Sem-III CBCS Regular Theory Examination.

SUBJECT: 2HS301 Mathematics - III Nov-Dec 2012.

TIME: - 3 HOURS INSTRUCTIONS:

1.All questions are compulsory.

2. Write answer of each section in separate answer books.

3. Figures to the right indicate marks of questions.

SECTION - I

Attempt the following: Question-1

Evaluate: (1) $L\{e^{-t} \sin 3t \cos 2t\}$ (2) $L\{t. \cosh t\}$ (A)

(B) Evaluate: (1)
$$L^{-1} \left\{ \frac{2s+1}{s^2+2s+6} \right\}$$
 (2) $L^{-1} \left\{ \frac{1}{(S+1)(S^2+1)} \right\}$

Using Laplace method, solve the initial value problem $\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = 0$, where (C) y(0) = 1, y'(0) = -1

Question-1

Find the Laplace Transform of $f(t) = \begin{cases} \sin t, & 0 < t < t \end{cases}$ (A)

(B) If
$$L\{f(t)\}=\overline{f(s)}$$
, prove that $L\{\frac{f(t)}{t}\}=\int_{s}^{\infty}\overline{f}(s)\,ds$. Using it find $L\{\frac{\sinh t}{t}\}$

State convolution theorem and apply it to evaluate: L^{-1} $\frac{1}{(S^2 + a^2)^2}$ (C)

Attempt the following: Question-2

(03)Expand: $f(x) = \sin x$ in a half range cosine series in the interval $(0, \pi)$

(A) Expand:
$$f(x) = \sin x$$
 in a harring (04)
(B) Find a Fourier series for the function: $f(x) = \begin{cases} x & ; & 0 \le x \le \pi \\ 2\pi - x & ; & \pi \le x \le 2\pi \end{cases}$

Find a Fourier series to represent : $f(x) = x^2$, $-\pi < x < \pi$ (04)(C) Hence deduce: $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$

Question-2

OR

(03) Find the half range cosine series to represent
$$f(x) = l - \frac{x}{2}$$
, $0 \le x \le l$

(04)Find a Fourier series to represent the function f(x) = x + |x|, $-\pi \le x \le \pi$ (B)

(C) Find a Fourier series for the function:
$$f(x) = \frac{(\pi - x)^2}{4}$$
, $0 < x < 2\pi$

Question-3 Attempt any three:

Express the function $f(x) = \begin{cases} -e^{kx} & ; & x < 0 \\ e^{-kx} & ; & x > 0 \end{cases}$ as Fourier integral and hence prove (A)

that $\int_{0}^{\infty} \frac{\lambda \sin \lambda x}{\lambda^{2} + k^{2}} d\lambda = \frac{\pi}{2} e^{-kx} ; x > 0, k > 0$

- Find Fourier transform of $f(x) = \begin{cases} k & ; & 0 < x < a \\ 0 & ; & \text{otherwise} \end{cases}$ (B)
- Using partial fraction method, find $L^{-1}\left\{\frac{s}{(s^2+1)(s^2+4)}\right\}$ (C)
- (1) Find: L⁻¹ $\left\{ \log \left(\frac{s+1}{s-1} \right) \right\}$ (2) Prove that: $L\left\{ \sin at \right\} = \frac{a}{s^2 + a^2}$; (D)

SECTION-II

Question-4 Attempt the following:

(12)

- If imaginary part of an analytic function is $e^{-x}(x\cos y + y\sin y)$ then find real part. (A)
- Find the bilinear transformation which maps the points 2,1,-2 in to the points 1,i,-1. (B)
- Evaluate $\oint_C \frac{\cos \pi z^2}{(z-1)(z-2)} dz$ where C is the circle |z|=3(C)

- If f(z) = u + iv is an analytic function of z then find f(z) if (A) $u - v = (x - y)(x^2 + 4xy + v^2)$
- Find the bilinear transformation which maps the unit circle |z| = 1 in to the real axis in (B) such a way that the points z = 1, i, -1 are mapped into the points $w = 0, 1, \infty$ respectively.
- Find the value of $\int_0^{2+i} (\bar{z})^2 dz$ along the real axis from 0 to 2 and then vertically from (C) 2 to 2+i.

Question-5 Attempt the following:

(12)

- Prove that $(i)E = e^{hD}(ii)E\nabla = \Delta$ (A)
- Find value of y when x = 110 from the following observation table (B)

x	100	150	200	250	300	350	400
у	10.63	13.03	15.04	16.81	18.42	19.90	21.27

Find root of equation $cosx = xe^x$ using Newton Raphson method correct up to three (C) decimal places.

- Given $y_{35.0} = 1175$, $y_{35.5} = 1280$, $y_{39.5} = 2180$, $y_{40.5} = 2420$ find y_{40} by Lagrange's (A) interpolation formula.
- Find a real root of equation cos x = 3x 1 upto three decimal places by iteration (B) method.
- Use Euler's method to solve $y' = x + y^2$ where y(0) = 1 and h = 0.1 to find y(0.5). (C)

Question-6 Attempt the following:

- From the difference table of $f(x) = x^3 3x^2 + 5x + 7$ for the values of x = 0,2,4,6,8 (4) (A) and extend the table for the calculation of f(x) for x = 10.
- Use Gauss seidal method to solve 83x + 11y 4z = 95, (B) (4) 7x + 52y + 13z = 104, 3x + 8y + 29z = 71
- Evaluate $\int_4^{5.2} \log_e x \, dx$ with h = 0.2 using trapezoidal rule. (3) (C)