Date: 15/11/2016

Ganpat University

B.Tech.(CE/IT) Sem-III CBCS (New) Regular Theory examination, Nov-Dec 2016 Subject: 2HS301 Discrete Mathematics & Probability

TIME: - 3 1	Hours Total Marks: 60	
2 Write an	nons are compulsory.	
3.Figures 1	to the right indicate marks of questions	
0		
	<u>SECTION – I</u>	
Question-1	Attempt the following:	
(A)	Prove that:	(04)
	(1) In a group, inverse of each element is unique.(2) Every cyclic group is abelian.	
(B)	Show that the set $G = \{1, -1, i, -i\}$ is cyclic group under multiplication operation. Also find	(03)
	all possible generators of it.	
(C)	In the set $R - \{1\}$ define an operation "*" as $a * b = a + b - ab$, $\forall a, b \in R - \{1\}$. Show that	(03)
	$\langle R-\{1\},*\rangle$ is group.	
Question-1	OR	
(A)	Attempt the following :	(04)
	(1) State and prove left cancellation law in group.(2) State and prove reversal law of inverse in group.	
(B)	Let $X = \left\{ \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \middle/ \alpha \in R \right\}$. Prove that $\langle X, \cdot \rangle$ where '·' is usual matrix	(03)
	multiplica- tion operation.	
(C)	Define Left and Right cosets. If $H = \{0,3\}$ and $a = 2$, find aH and Ha	(03)
Question-2	Attempt the following:	
(A)	Is the graph given below weakly connected, strongly connected or unilaterally connected?	(04)
	Justify answer with proper reason.	
	0, 04, 05, 08	
	$U_2 \rightarrow U_3 \qquad U_6 \rightarrow U_7$	
(B)	Define Adjacency matrix representation of directed multigraph. Also find it for the following graph.	(03)
	19 102	

(C)

Define following terms and draw suitable graph to explain them : (1) Rechability (2) Out degree of vertex (3) Path of graph.

04

(03)

03

Seat No.

Ouestion-2

OR

Define Isomorphic graph. Check whether the following graphs are isomorphic or not. Give (04, (A) reason(s).

Define Incident matrix representation for simple di-graph. Also find it for the following **(B)** graph.

Define Node base of graph. Find all possible Node base of the following graph.

46 47 CO 48 410 YL U3 Ug

Attempt the following: **Ouestion-3**

- (04)Verify (a) $(A \cup B)' = A' \cap B'$ (b) $(A \cap B)' = A' \cup B'$ if $A = \{(x_1 / 0.3), (x_2 / 0.7), (x_3 / 0.2)\}$ (A) and $B = \{(x_1 / 0.1), (x_2 / 0.6), (x_3 / 1.0)\}$ (06)
- Attempt any Two **(B)**
- If $A = \{(x_1 / 0.3), (x_2 / 0.6), (x_3 / 0.7)\}$ and $B = \{(x_1 / 0.8), (x_2 / 0.5), (x_3 / 0.4)\}$ find (a) A-B, A+B, (A-B)+(A+B) and A'+B'

Prove that the order of subgroup of a finite group is the divisor of the order of group. (b)

Show that $\langle Q^+, * \rangle$ is abelian group under "*" operation defined by $a * b = \frac{ab}{5}, \forall a, b \in Q^+$ (c)

Section-II

Attempt the following: **Question-4**

(A)

$\sum y$	(04
$\overline{\sum y^2 - (\sum y)^2}$	

Derive Karl Pearson's correlation coefficient $r = \frac{n\sum xy - \sum x}{\sqrt{n\sum x^2 - (\sum x)^2}\sqrt{n}}$ Calculate the rank correlation coefficient for the following data using Spearman's formula (03)**(B)** 62 60 56 58 56 54 46 x 54 42 58 54 40 44 36 V Define probable error in Bivariate distribution. Calculate rank correlation coefficient and (03)

 (\mathbf{C})

probable error for the following distribution using difference formula 15 30 45 60 75 x 250 225 200 150 175 V

(03)

(03)

_uestion -4				0	R						
(A)	Derive the Spearman's rank correlation coefficient formula $\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$									(04)	
· (B)	Prove that correlation coefficient is independent of shift origin and change of scale.								(03)		
. (C)	A computer while calculating correlation coefficient between x and y from 25 pairs of observations obtained the results $\sum x = 125$, $\sum y = 100$, $\sum x^2 = 650$, $\sum y^2 = 460$, $\sum xy = 508$. It was later discovered that two pairs of x and y values namely $(x, y) = (6.14)$, $(x, y) = (8.6)$.									(03)	
	were entered wror	ngly whi	le the co	orrect va	lues we	re(x, y)	=(6.14)	(x, y) =	= (8,6).	Obtain	
Question -5	the correct value of Attempt the follo	of correlation of correlation of correlation of correlation of the second statement of the second stat	ation co	efficient		(, , , ,	(,)	()			
(A)	Derive the equation of regression line of y on x of the form $y - \overline{y} = b_{yx}(x - \overline{x})$ (04)										
(B)	Using difference f	ormula (compute	e regress	sion line	of x on	y from	the foll	lowing d	lata.	(03)
	x 105	104	102	101	100	99	98	96	93	92	
(C)	y 101 103 100 98 95 96 104 92 97 94 Show that : (1) Regression coefficients are independent of shift origin (1) Arithmetic men of regression coefficients is greater than correlation coefficient. (1) Regression coefficients are independent of shift origin (1) Regression coefficients are independent of shift origin (1) Regression coefficients are independent of shift origin									(03)	
Question -5				0	R		1	C 11			(0.4
(A)	Using square form	nula com	ipute reg	gression	line of	y on x	from the	e follow	ing data.	20	(04)
	x 23	27	28	29	30	31	33	<u> </u>	30	39	
(B)	Obtain the equation	n of rec	2.5 Tression	line of	ron v	of the fo	$rm x - \bar{x}$	$\overline{c} = b_{m}$	$(v-\overline{v})$	52	(03
(C)	 Show that : (1) Geometric mean between regression coefficients is equal to correlation coefficient. (2) If a one regression coefficient is greater than unity then the other must be less than unity. 									(03)	
Question-6	10 unbiased soins	are toss	ad simu	Itonaour	Jy Find	the prol	ability (of obtain	ning (1)	exactly	(04)
(A)	six heads (2) at le	ast 8 hea	ads and	(3) not r	nore tha	n three h	neads.	or ootan	<u>6</u> (1)	endelly	(0.
(B)	Attempt any Two: (0								(06)		
(a)	Let X be a random variable with standard normal distribution. Find (i) $P(-0.73 \le X \le 0)$ (ii) $P(-1.37 \le X \le 2.01)$ (iii) $P(X \le 0.5)$.										
(b)	If the probability of a bad reaction from a certain injection is 0.001, determine the chance that out of 2000 individuals more than 2 will get a bad reaction.										
(c)	A quiz has 10 mul answer. Find the p	ltiple cho probabili	bice que ty that t	stions. I he stude	Each wit ent get 8	n 3 alter or more	correct	answers	e of the s.	correct	

End of Paper