Total Marks: 70

Ganpat University B.Tech. (CE/ IT) Sem - IV CBCS Regular Theory examination Subject: 2HS401 Discrete Maths May - June 2013

Time: - 3 Hours

Instructions:

- 1. All questions are compulsory.
- 2. Write answer of each section in separate answer books.
- 3. Figures to the right indicate marks of questions.

SECTION - I

Question-1 Attempt the following

(A) In $R - \{1\}$ there is a binary operation '*' defined a * b = a + b - ab, $\forall a, b \in R - \{1\}$. Is $\langle R - \{1\}, * \rangle$ group?

(B) Define Group. Prove that $Z = \{0, 1, 2, 3, 4, 5, 6\}$ is commutative group under "addition modulo 7"

(C) Let $X = \left\{ \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \middle| \alpha \in R \right\}$. Prove that $\langle X, \cdot \rangle$ is group with respect to usual matrix multiplication operation '.'

Question-1

(A) Define sub group. Find all possible sub groups of group $G = \{0, 2, 4\}$ with respect to operation of addition modulo 4 (i.e. $+_4$)

OR

- (B) Define cyclic group. Show that $\langle Z, + \rangle$ is cyclic group. Find all possible generators of $\langle Z, + \rangle$
- (C) Let G be a group. Prove the following results.
 - (1) If $a^{-1} = a \quad \forall a \in G$ then G is abelian group.
 - (2) Identity element in G is unique.

Ouestion-2 Attempt the following

- (A) Define: (1) Simple graph (2) Pseudo graph (3) Loop (4) Pendent vertex. Give example of each.
- (B) Define Incident matrix representation of directed graph and find the Incident matrix of the following graph

12

Question-2

- (A) Define: (1) Cyclic graph (2) isolated vertex (3) Rich ability (4) Sub graph. Give example of each.
- (B) Define Isomorphic graph. Also check whether the following graphs are isomorphic?

(C) Define path. Find all possible path form node v_1 to v_5 for following graph.

Question-3 Attempt the following

- (A) Define with example : (1) Fuzzy subset (2) Complement of Fuzzy subset
- (B) Let $G = \{1, -1, i, -i\}$. Show that $\langle G_{3}, \cdot \rangle$ is group with respect to usual \cdots multiplication operation '.'
- (C) If $A = \{(x_1 / 0.2), (x_2 / 0.7), (x_3 / 0.4), (x_4 / 1)\}\ B = \{(x_1 / 0.1), (x_2 / 0.3), (x_3 / 0.2), (x_4 / 0.7)\}\$ than find $A' + B, A \cdot B, A \cup B', B - A'$

SECTION – II

Question-4 Attempt the following

- (A) Explain Hasse Diagram of a poset. Draw the Hasse diagram of
 - (1) $\langle S_{60}, D \rangle$ (2) $\langle L^2, \leq_2 \rangle$, where $L^2 = L \times L$, $L = \{0, 1\}$ and $(a, b) \leq_2 (c, d)$ if $a \leq c$ and $b \leq d$
- (B) Let $\langle L, \leq \rangle$ be a lattice then for $a, b \in L$ prove that $a \leq b \Leftrightarrow a * b = a \Leftrightarrow a \oplus b = b$

(C) Let $\langle L \leq \rangle$ be a lattice as a poset there are two binary operations * and \oplus on L such that $\langle L, *, \oplus \rangle$ is lattice as an algebraic system.

Question-4

OR

- (A) Define: (1) Lattice Isomorphism, (2) Poset (3) Least Upper bound (4) Chain
- (B) Let $\langle L \leq \rangle$ be a lattice then for a,b,c $\in L$ prove that

(1) $a \oplus (b \oplus c) = (a \oplus b) \oplus c$ (2) $a * (a \oplus b) = a$

(C) Show that 0 & 1 are complement of each other and they are unique

3

4

12

Question-5 Attempt the following

- (A) State Stone's representation theorem and explain it by giving an example.
- (B) Define: Join irreducible element and Atom of a Boolean algebra. For the lattice in the following 4 figures find the Join irreducible element and atoms.

3

3

4

12

(C) Define Minterm and Maxterm. Find all the minterms and maxterms of a Boolean algebra with two variables x_1 , x_2

OR

Question-5

- (A) State & Prove De Morgan's theorem.
- (B) B be a non-empty set, a be an element of $\langle B, *, \oplus, ', 0, 1 \rangle$ Prove that $a \neq 0$, a is an atom iff $a * x = 0 \text{ or } a * x = a, \forall x \in B$ where 0 means 0 - element
- (C) Draw the Hasse diagram of $\langle S_{210} \rangle$, D > and find the join irreducible elements and atoms.

Question-6 Attempt the following (any three)

- (A) Define poset. Show that $\langle P(X), \subseteq \rangle$ is a poset, where P(X) is the power set of X
- (B) Define complemented lattice and distributive lattice. Give an example of complemented lattice which is not a distributive lattice and explain it.
- (C) Prove that every chain is a distributive Lattice.
- (D) Define Boolean algebra and give any three examples of it with detail.