Seat No.__

GANPAT UNIVERSITY

B. Tech Semester-IV(CE/IT) CBCS Regular Examination May-2014 Subject: 2HS 401 Discrete Mathematics

Time: 3 hours	Total Marks: 70
Instructions: 1. All Questions are compulsory.	
 Write answer of each section in separate answer book. Figure to right indicates the indicates marks. 	
SECTION - I	
Question-1	
(A) Show that Relation R on Z defined by $x \equiv y \pmod{m} \Leftrightarrow (x - y)$ is an equivalence relation.	divisible by m is [4]
 (B) For Bounded lattice < L, *, ⊕, O, I > prove the following identities. (i) a*0 = 0 (ii) a*1 = a (iii) a⊕0 = a (iv) a⊕1 = 1 	[4]
(C) Draw the Hasse Diagram for given Po-sets. (i) $< S_{30}, D >$ (i) $< S_{60}, D$	D> [4]
Oraction 1	
Question-1 (A) Define Lattice. State and Prove Bridge Theorem for lattice as a Po-se	t. [6]
(B) Define Distributive lattice. Prove that every chain is a Distributive lat	ttice. [6]
Question-2	
(A) Define Atoms and Join-irreducible for Boolean Algebra find the same $(i) < S_{30}, D > (i) < S_{60}, D >$	
any Three	[4]
(B) For any $a \in \langle B, *, \oplus, ', O, I \rangle$ prove that $\{a'\}' = a$	[3]
(C) State all the properties of Boolean algebra.	[4]
Find ande base for the fithewing graph	(B) Deine rede Base

OR

Question-2

(A) Find all the sub-boolean algebra of $< S_{210}, D >$	[4]
(B) State and prove Stone's Representation theorem.	[4]
(C) Convert $A \oplus (B * C)$ into min-terms.	[3]

Question-3 Attempt any Three

Question-5 Attempt any Inree	
(A) State and prove De-Morgan's laws for fuzzy subsets.	[4]
(B) Prove that for two sub-lattices L_1 and L_2 , $L_1 \cap L_2$ is a sub-lattice. Is $L_1 \cup L_2$ a sub-lattice? Justify your answer.	[4]
(C) Give an example of Lattice which is Complemented but not Distributive , with Explanation.	[4]
(D) Compute $A' - B'$, $B' - A'$, $A - B$ and $B - A$ for two fuzzy subsets A and B, we	here
$A = \{(x_1/0.3), (x_2/0.5), (x_3/0.9), (x_4/0.1)\}$ and	
$B = \{ (x_1/0.7) , (x_2/0.2) , (x_3/0.4) , (x_4/1) \}.$	[4]
	1-1
SECTION - II	
Question-4	
	a tuli
(A) Define Group. P. T. $\langle Z_6, +_6 \rangle$ is a group under the $+_6$ addition modulo 6.	[4]
(B) P.T. For group G , $(i) (ab)^{-1} = b^{-1}a^{-1} (ii) ax = ay \Rightarrow x = y, \forall a, b, x, y \in G$	[4]
(C) P. T. $\langle Q^+, * \rangle$ is abelian group, Q^+ is a set of all positive rational numbers	
and * is defined by $a * b = \frac{ab}{5}$.	[4]
OR	[-]
Question-4	
	64) N
(A) Define Sub-Group. Find all possible sub-groups of a group $\langle Z, + \rangle$ (B) Prove that;	[4]
(i) Every cyclic group is abelian.	[2]
(ii) A group of prime order can't have a proper subgroup.	[2]
(C) Let H be a sub-group of group G. For $a \in G$ show that aH and Ha formed	
by $a \in G$ with respect to H are either identical or disjoint.	[4]
Question-5 Attempt any Three	
	(B) Born
(A) Is $< \mathbb{R} - \{1\}, *>$ abelian group? where $a*b = a+b-ab \forall a, b \in \mathbb{R} - \{1\}$. (B) Explain Predicates in detail.	[4]
(C) Define Statement function, Variables and Quantifiers.	[4] [4]
(D) Define Node Base. Find node base for the following graph.	[4]
Vy	
Ui Ui	

 (\cdot)

2

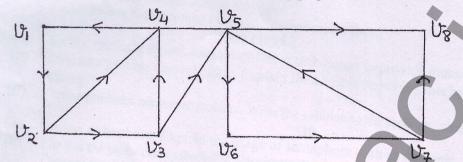
13

Vz

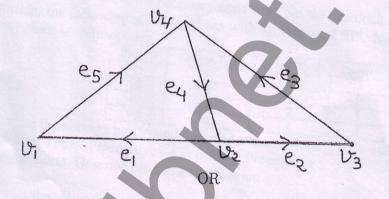
Question-6

(A) Define following terms by taking suitable graph.

- (i) Isolated vertex (ii) Pseudo graph (iii) In-degree of vertex (iv) Path of graph
- (B) Define. Weakly Connected, Unilaterally Connected and Strongly Connected Graph. Decide the type of Connectedness of the following graph.



(C) Define Incident Matrix. Find it for following graph.



Question-6

- (A) For un-directed graph G, Prove that $\sum deg(v) = 2 \cdot \{ total \ no. \ edges \ of \ G \}$
- (B) Define Isomorphic Graphs. Check whether the following graphs are isomorphic?

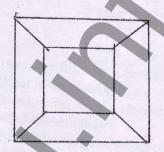
[4] [4]

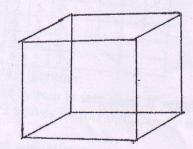
 $[\mathbf{Z}]$

[4]

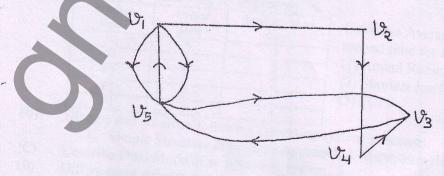
[4]

[3]





(C) Define Adjacent Matrix. Find it for following graph.



End of Paper