Total marks: 70

GANPAT UNIVERSITY

B. TECH. SEM. IV CBCS (CE/IT) REGULAR EXAMINATION. April - June 2015 Sub : (2HS 401) DISCRETE MATHEMATICS

Time: 3 hrs

Instruction : (1) All questions are compulsory

- (2) Write answer of each section in separate answer books.
- (3) Figures to the right indicate marks of questions.

SECTION - I

Answer the following. Que-1

Show that following graphs are isomorphic [A]

Write adjacency matrix representation of following graph. [B]

Find reachable set of $\{v_1, v_3, v_5\}$ for the following graph. [C]

Answer the following. Que-1

Find node base of following graph [A]

- State and prove Hand shaking theorem. [B]
- Consider the following directed graph G(V, E) where [C]
 - $V = \{1, 2, 3, 4, 5, 6, 7\}, E = \{(1, 1), (2, 5), (1, 5), (5, 2), (7, 3), (1, 5), (4, 6), (4, 2), (6, 6)\}$
 - (1) Identify any loops.
 - (2) Identify any paralled edges.
 - (3) Are there any source in G?
 - (4) Are there any sinks in G?

(12)

(12)

Que-2	Answer the following.	(0.4)
[A]	A subgroup H of a group G is normal if and only if $xHx^{-1} = H$; $\forall x \in G$.	(0,4)
[B]	Show that set of fourth root of unity form a group under multiplication.	(04)
[C]	Find all the subgroups of a cyclic group of order 20 with generator a. OR	(03)
	for 3 hrs	
Que-2 [A]	Answer the following. Show that the set of all positive rational numbers form an abelian group under the composition defined by $a * b = \frac{ab}{2}$.	(04)
[B]	Show that $(Z_4, +_4)$ is cyclic group and check $\overline{3}$ is generator of Z_4 or not.	(04)
[C]	If a^{-1} is the inverse of an element <i>a</i> of a group $(G,*)$ then $(a^{-1})^{-1} = a$.	(03)
Que-3	Attempt any three:	(12)
[A]	Let $D = \{1, 2,, 9\}$. Determine the truth value of each of the following statement. (1) $(\forall x \in D), x + 4 < 15$ (2) $(\exists x \in D), x + 4 = 10$ (3) $(\forall x \in D), x + 4 \le 10$ (4) $(\exists x \in D), x + 4 > 15$	
[B]	Prove that $p \lor (q \lor r) = (p \lor q) \lor r$.	
[C]	Negate the statement, "for all real numbers x, if $x > 3$ then $x^2 > 9$ ".	
m	Define group and graph	

SECTION -II

- Que-4 Answer the following.
 - [A] Check $(\{1,3,6,15\}, GCD, LCM\})$ is sublattice of the lattice $\langle S_{30}, GCD, LCM \rangle$ or not.

(12)

[B] Check the following lattice is complemented or not.

[C] Draw hasse diagram of $\langle S_{45}, D \rangle$ where *aDb* means *a* divides *b*.

Answer the following. Que-4

Show that the partial order set $\langle N, D \rangle$ is lattice where N is set of natural number and [A] aDb means a divides b.

Let (L, R) be a lattice and $b, c \in L$ then prove that $bRc \Rightarrow a \oplus b R \ a \oplus c, \forall a \in L$. [B]

Define (1) bounded lattice (2) complete lattice (3) complement of an element [C]

Answer the following. Que-5

- Write any six properties of boolean algebra. [A]
- Write the boolean expression $(x_1 \oplus x_2)' \oplus (x_1' * x_3)$ in an equivalent sum of products (04)[B] canonical form in three variables x_1, x_2 and x_3 .
- Write join-irreducible elements, [C] meet irreducible elements and atoms for the lattice shown in figure.

OR

Answer the following. Que-5

Consider the boolean algebra given in figure as under. [B] Let the subsets of a given boolean algebra be as under. Check whether they are sub-boolean algebra or not. $S_1 = \{a, a', 0, 1\}$ $S_2 = \{a * b', a' \oplus b, 0, 1\}$ $S_3 = \{a * b', b', a, 1\}$

Let A be a set, $A \neq \emptyset$. Then find join-irreducible elements and atoms for the lattice [C] $\langle P(A), \subseteq \rangle$.

Attempt any three: Que-6

Find A - B, $A \cup B$ and $A \cdot B$ for following two Fuzzy subsets A and B where [A] $A = \{(x_1, 0.5), (x_2, 1), (x_3, 0.2), (x_4, 0.5)\}$ and $B = \{(x_1, 0.3), (x_2, 0.2), (x_3, 0.8), (x_4, 0)\}$

If A and B are fuzzy subsets of E then prove that $(A \cup B)' = A' \cap B'$. **[B]**

Define (1) Fuzzy subset (2) Boolean algebra. [C]

[D] Verify
$$(A \cdot B)' = A' + B'$$
 for following two fuzzy subsets A and B.
 $A = \{(x_1, 0.2), (x_2, 0.3), (x_3, 1), (x_4, 0)\}$ and
 $B = \{(x_1, 0.3), (x_2, 0.5), (x_3, 0.7), (x_4, 1)\}$
END OF PAPER

(12)

(03)

(04)

(04)

(03)

(12)