Student Exam No.

GANPAT UNIVERSITY

B. Tech. Semester: V (Information Technology) **Regular Examination November – December 2013**

2IT503: Computer Graphics

Time: 3 Hours

Total Marks: 70

Instruction 1. Figures to the right indicate full marks

- 2. Each section should be written in a separate answer book
- 3. Be precise and to the point in your answer

Que

		Section – I	
Que1			12
	A	Explain loading of frame buffer in detail. If $(Xmin, Ymin) = (0, 0)$ and $(Xmax, Ymax) = (800, 400)$ then calculate the address of (150, 200). Assume bi-level system.	4
	B	Differentiate following:1. Raster scan system and Random scan system2. DDA and Bresenham's line drawing algorithm	4
	С	Simulate the points for line points A $(1, 1)$ and B $(8, 5)$ using Bresenham's line drawing algorithm.	4
		OR	
Que. – 1		and the second of the second second and the second second second second and the second s	12
	A	Write a modified Bresenham's Line Drawing Algorithm that produces a dash line pattern.	4
	B	List out the techniques for color CRT monitors. Explain any one of them in detail.	4
2mmil 1	С	Simulate the points for the circle having radius $R=14$ and center point as origin using Mid-point circle algorithm.	4
Que. – 2		 Chastification of radius A 	11
	A	 Prove following: 1) Two Successive translations are additive. 2) Two Successive Rotations are multiplicative. 3) Two successive scaling are multiplicative. 	6
	В	Explain Cohen-Sutherland line clipping algorithm and find clipped line (Interior) for Given clip window and Input line Top left corner (25,35) and right bottom corner (45,10) of Clip Window Input line X1, Y1 \rightarrow (30, 38) X2, Y2 \rightarrow (50, 15) OR	5
Que. – 2			11
	A	 Apply the shearing transformation to Square with A(0,0), B(1,0), C(1,1) and D(0,1) as given below: a) Shear parameter value of 0.5 relative to line Yref = -1 b) Shear parameter value of 0.5 relative to line Xref = -1 	6
	B	Explain Liang-Barsky line clipping algorithm and find clipped line (Interior) for Given clip window and Input line Top left corner (5,35) and right bottom corner (40,25) of Clip Window Input line $X_1, Y_1 \rightarrow (10, 20)$ X2, Y2 $\rightarrow (15, 40)$	5
Que3	Ans	wer the following:	12
	A.	Define following terms:	8
C		1. Resolution4. Frame buffer7. Bitmap2. All-or-none string clipping5. Pixel phasing8. Initiator3. Rigid-body transformation6. Horizontal Retrace	3
	В.	Application of computer graphics.	4

B. Application of computer graphics.

Page No 1

		Section – II	
Que 4			12
Que	A	Show that reflection of the object with respect to origin is same as rotation of the object with $\theta = 180$ degree.	4
	B	Which algorithms are used to fill the color in the object? Explain an algorithm which is used to fill the object which having multicolor boundary.	4
	С	What is anti-aliasing? Explain super sampling and area sampling techniques of anti- aliasing in detail.	4
		OR	12
Que. – 4		During the Matrix representation for Reflection of an object with respect to the line $y=x$.	4
	A B	Explain following: 1. Nyquist sampling frequency 2. Pixel phasing	4
	C	Discuss Editing Structure primitives with Example.	4
	·		11
Que. – 5		in the second state in the first state and	6
	A	What is Halftone approximation? Explain it with 5x3 pixel grid.	5
	B	What is Logical Classification of input devices? Explain any Through in detail	
Ou 5		Presidence Operations	11
Que 5	A	Answer the following:	6
		 Point clipping Refresh CRT Classification of Fractals. 	
	В	What is pivot point rotation? Rotate the diamond shaped polygon whose vertices are A (-1,0), B(0,-2), C(1,0) and D(0,2) about the pivot point P(-1,-1).	5
a i		the following:	12
Que. – 6	Ar	What is transformation? Explain Three Dimension scaling transformation.	6
	R	Explain following 3D display methods in detail:	6
	D	1. Depth Cueing	
		2. Perspective Projection	
		3. Surface Kendering	

END OF PAPER

Page No 2