Seat No_____

GANPAT UNIVERSITY B.Tech. Semester VI Examination May-June – 2012 CE601/IT601: Theory of Computation

Max Time : 3 Hour]

[Total Marks: 70

6

[6]

[6]

[6]

Instructions:

- 1. All questions are compulsory
- 2. Figures to the right indicate full marks.
- 3. Answer Both Sections in Separate Answer sheets

SECTION-I

Q-1 Answer the following questions.

[A] Let M1 and M2 be the FAs pictured below accepting languages
L1 and L2, respectively. Draw FAs accepting the following languages.
a. L1 U L2
b. L1 ∩ L2
c. L1 - L2

$$M_1 \longrightarrow A$$
 a B a C $M_2 \longrightarrow X$ a Y b

[B] Find the regular expression on alphabet $\{0, 1\}$ for following languages.

- 1. The language of all strings in which number of 0's is even and the number of 1's is odd.
- 2. The language of all strings does not end with 01.
- 3. The language of all string not containing the substring 00.
- 4. The language of all strings in which every 0 is followed immediately by 11.
- 5. The language of all strings having length 6 or less.
- 6. The language of all string not containing the substring 000

[OR]

Q-1 Answer the following questions.

- [A] Draw DFA for following Regular Expressions.
 - 1. (a + b)* (b+ aa) (a+b)*
 - 2. (bbb + baa)*a
- [B] Answer the following questions.
 - 1. If $R = \{(1,2),(2,1),(1,1),(2,2)\}$ be a relation on set $\{1,2,3\}$. Of the three properties reflexivity, symmetry, transitivity determines which ones the relation R has. Give reason.
 - . Prove D'Morgan Law using Venn Diagrams.
 - Write Quantified Statement for P is Prime Number.

P.T.O.

- Q-2 Answer the following questions.
- [A] Draw FA using KLEEN's theorem part- I for

 $(a+b)^*(abba^*+(ab)^*ba)$

[B] For a given regular expression draw NFA-Null and convert it into DFA ((00*)* 1)*

[OR]

- Q-2 Answer the following questions.
- [A] Draw FA using KLEEN's theorem part-I for

 $(0 + 1)^* (011 + 01010) (0 + 1)^*$

[B] For a given regular expression draw NFA-Null and convert into DFA

 $(a^*bb)^* + bb^*a^*$

- Q-3 Answer the following questions.
- [A] For the following FA find a minimum state FA recognizing the same language with all [5] necessary steps.

[B] Prove using PMI that for every $n \ge 0$,

[C] Let $L = \{ww / w \in \{0, 1\}^*\}$ show that L is regular or not using pumping lemma theorem.

[5]

5

6

P.T.O

[4]

[3]

	SECTION-II	
Q.4	Answer the following questions.	
[A]	Convert given CFG to Chomsky normal form (CNF) $S \rightarrow TU \mid V$	[6]
	$T \rightarrow aTb \mid \Lambda$	
	$U \to cU \mid \Lambda$	
	$V \rightarrow aVc \mid W$	
	$W \rightarrow bW \mid \Lambda$	
[B]	Prove that given CFG is ambiguous or not $S \rightarrow aSb \mid aaSb \mid^{\wedge}$	[3]
[C]	Prove using Pumping lemma that following language is CFL or not? $L = \{ a^n b^j c^k k > n \text{ and } k > j \}$	[3]
0.1	[OR]	
Q.4 [A]	Answer the following questions. Convert given CFG to Chomsky normal form (CNF) $S \rightarrow AaA \mid CA \mid BaB$	[6]
	$A \rightarrow aaBa CDA aa DC$ $B \rightarrow bB bAB bb aS$ $C \rightarrow Ca bC D$ $D \rightarrow bD ^{$	
[B]	Prove that given CFG is ambiguous or not $S \rightarrow a \mid Sa \mid bSS \mid SbS \mid$	[3]
[C]	Prove using Pumping lemma that following language is CFL or not? $I = \{a^n b^j c^k / k = i^*n\}$	[3]
Q-5 [A]	Answer the following question Design PDA for { $x \in \{a,b\}^* / N_a(x) = 2 N_b(x)$ }. Trace for sample valid and invalid input strings.	[6]
[B]	Prove using Pumping lemma that following language is is CFL or not? $I = \{WW W \in \{a, b\}^*\}$	[5]
Q-5	Answer the following questions.	10
[A]	Design PDA for { $x \in \{a,b\}^* / N_a(x) = N_b(x) + 1$ }. Trace for sample valid and invalid input strings	[6]
[B]	Prove using Pumping lemma that following language is CFL or not? $L = \{WW^R / W \in \{a,b\}^*\}$	[5]
Q-6	Answer the following questions.	
[A]	Write non deterministic PDA for given CFG. Convert Non deterministic PDA to deterministic PDA by using look aheads (LA). Trace the string for both PDA.	[6]
	$S \rightarrow T S$	
[B]	Design Turing Machine to copy given input string.	[6]

--- END OF PAPER--

3/3