Student Exam No._

D

Fig. B.

E

GANPAT UNIVERSITY

B. Tech. Semester VI Computer Engineering/Information Technology Regular Examination May-June 2013 2CE601/2IT601: Theory of Computation Total Marks: 70

Time: 3 Hours

Instructions:

1. All questions are compulsory

2. Figures to the right indicate full marks.

3. Answer Both Sections in Separate Answer sheets

SECTION-I

Q-1	[A]	Give recursive definition of each of followings.1. The set N of all natural numbers.2. The language of strings of palindromes.	[4]
	[B]	In each case, say whether the statement is a tautology, a contradiction or neither. Give supporting proof. 1. $Q \land (P \rightarrow Q)$ 2. $(P \rightarrow Q) \land (\neg P \rightarrow Q)$	[4]
	[C]	Prove using mathematical induction that for every $n \ge 1$ $\sum i^2 i^i = (n-1)^2 2^{n+1} + 2$	[4]
Q-1	[A]	OR Write recursive definition of language of strings with more a's than b's. Prove that REV $(x y) = REV (y) REV (x)$ for two string x, y of some alphabet.	[6]
	[B]	 State whether following statements are true or false. Also give reason. 1. if 1+1=3, then 1+2=3 2. 2+4=3 only if 2+2=4 	[4]
	[C]	Show that the statements P v Q v R v S and $(\sim P \land \sim Q \land \sim R) \rightarrow S$ are equivalent.	[2]
Q-2	[A]	Find the regular expression for FA in following Fig. A and B.	[6]

1

0

1

Fig. A.

[B] Convert following NFA given in Fig. B to DFA using subset construction.

[5]

OR

Q-2 [A] In each case, find a string of minimum length in $\{0,1\}^*$ not in the language [6] corresponding to the given regular expression. 1. 1* (01)* 0* 2. $(0^* + 1^*)(0^* + 1^*)(0^* + 1^*)$ 3. 0* (100*) 1* [5] [B] Draw DFA corresponds to following regular expressions 1. (11+10)* **2.** (0+1)(0+1)(0+1)Draw NFA-null using KLEEN's theorem part-I for $(0+1)^* 0^* (10+01)^*$ [6] Q-3 [A] Let $M=(Q, \sum, q_0, A, \delta)$ be an NFA - null, where $Q=\{q_0, q_1, q_2, q_3\}, \sum = \{0, 1\}, A=\{q_3\}$ [6] [B] and δ is given by the following table.

q	δ(q, 0)	δ(q,1)	δ(q,^)
qo	{ q 0, q 1}	{ q 0}	{ q 1}
.q1	{ q ₂ }	{ q 1}	$\{q_0, q_2\}$
q ₂	{93}	{ q ₃ }	{ q ₃ }
q ₃	Ø	Ø	{ q 1}

find $\delta^*(q_0, 11)$, $\delta^*(q_0, 001)$

SECTION-II

Using pumping lemma for regular language prove that language $L = \{0^{i}1^{i} \mid i \ge 0\}$ is [B] [6] not a regular language.

OR

Give a grammar which has "Dangling Else" problem. Also draw the derivation tree. Q-4 [A] [6]

- Show, using the pumping lemma for CFL that the given language L is not a CFL. [B] [6] Where, $L = \{a^n b^{2n} a^n / n \ge 0\}$
- [A] Draw a TM (Turing Machine) accepting language of palindrome strings. Q-5
 - [B] Consider the language of all balanced strings involving two types of brackets [] {}. [5] CFG with productions are : $S \rightarrow SS | [S] | \{S\} | \Lambda$ Give transition table for Deterministic PDA accepting the above language.

OR

[A] For the following FA find a minimum state FA recognizing the same language. Q-5

[6]

[6]

[6]

	[B]	Draw the TM (Turing Machine) for the language x mod 3, x $\in \{0,1\}^*$	[5]
Q-6	[A]	Convert the following CFG to Chomsky normal form (CNF) $S \rightarrow TU \mid D$, $T \rightarrow aTb \mid ^$, $U \rightarrow bU \mid ^$, $D \rightarrow aDb \mid W$, $W \rightarrow bW \mid ^$	[6]
	[B]	Give transition table for PDA corresponds to following language	[6]

S→ aSa | bSb | a | b |^

End of Paper