GANPAT UNIVERSITY

B. Tech. Semester VI (Computer Engineering / Information Technology)

Regular Examination May 2014

2CE604 / 2IT604 : Design and Analysis of Algorithms

Time: 3 Hours

2

Total Marks: 70

Instruction: 1. Each section should be written in a separate answer book. 2. Be precise and to the point in your answer.

Section - I

Q - 1 (a)	<pre>Find the space complexity for the following function: // note: x is an unsorted array int findMin(int[] x) { int k = 0; int n = x.length; for (int i = 1; i < n; i++) if (x[i] < x[k]) k = i;</pre>	4
(b)	return k; } Explain the following terms with example:	4
(c)	Prove that following statements are true or false: 1. $f(n) = 10n^2 + 7 \neq \Omega(n^3)$ 2. $f(n) = 7n^*2^n + 22 = O(n^22^n)$	4
Q – 1 (a)	Using the step count method analyze the time complexity when two m x n	4
(b)	Explain the following terms with graph: 1. Big-O notation 2. Omega notation	4
(c)	Express the complexity of following functions using theta (Θ) notation. Clearly indicates value of constants C ₁ , C ₂ and n ₀ . 3. f(n) = $17*2^n + 5n^3 + n^2 + 6$ 4. f(n) = $79n^3 + 44n$	4
Q - 2 (a)	Solve the recurrence: $T(n) = 2T(n-1) + 3^{n} + n 2^{n} + 2^{n}$	6
(b)	Solve the recurrence using change of variable method: $T(n) = \begin{cases} 1 & , \text{ if } n = 1 \\ 3T(n/2) + n & , \text{ if } n \text{ is power of } 2, n > 1 \\ OR \end{cases}$	5
Q - 2 (a)	Solve the following homogeneous recursion: $T(n) = \begin{cases} n & , \text{ if } n = 0,1 \text{ or } 2 \\ 5T(n-1) = 8T(n-2) + 4T(n-2) \text{ otherwise} \end{cases}$	6
(b)	Solve the recurrence using intelligent guesswork method with initial cond. $T(0) = 0$, T(n) = 2T(n/3) + n	5
Q - 3 (a)	Solve the recurrence: $T(n) = 9T(n/3) + n$	4
(b) (c)	Solve the recurrence: $T(n) = 2T(n/2) + n^2$ Which function grows faster? Justify your answer. n^{Ign} vs $(la n)^n$	4 2
(d)	What is an algorithm? Which factors are affecting on algorithm analysis?	2

Page 1 of 2

Section - II

	Section - 11	
Q - 4(a)	Sort following data by using Insertion Sort: E,X,A,M,P,L,E	3
(b)	Apply "Counting Inversion Algorithm (Divide and Conquer)" on following data and find no's of Inversion.	5
(c)	89,23,74,56,99,21,13,74 Give solution of 8-Queens Problem using Backtracking Method.	4
	OR	
Q - 4(a)	Sort following data by using Bubble Sort: 12,89,36,0,8,10,2,45,99,23	3
(b)	Explain the use of Divide and Conquer Technique for Binary Search Method. Give the algorithm for Binary Search Method. What is time complexity of Binary Search Method?	5
(c)	Write algorithm of Selection Sort and Find its best case time complexity.	4
Q-5(a)	Define Minimal Spanning Tree (MST). Explain Krushkal's Algorithm to find MST with an example	5
(b)	Given coins of denominations 2, 4 and 5 with amount to be pay is 7. Find optimal no. of coins and sequence of coins used to pay given amount using Dynamic	3
(c)	Explain in brief Breadth First Search with Example.	3
	OR	5
Q - 5 (a)	Explain characteristics of Greedy Algorithm. Also Explain data structure and	5
(b)	Solve following knapsack problem using dynamic programming algorithm with given capacity W=5, Weight and Value are as follows :	4
(c)	(2,12),(1,10),(3,20),(2,15). Write down difference between Kruskal's and Prim's algorithm for MST.	2
	and the state of the Assignment Broblem	5
Q-6 (a)	Explain use of Branch & Bound Technique for solving Assignment Problem.	5
(b)	Consider the chain of matrices A1, A2,, A6 with the dimensions given below. Give the optimal parenthesization of a matrix chain product:	Э
	A1: 30 X 35	
	A2: 35 X 15	

A3 15 X 5

A3 13 A 3 A4 5 X 10 A5 10 X 20 A6 20 X 25 (c) Give Difference between Dynamic Programming and Greedy Method.

END OF PAPER

.)

2

Page 2 of 2