
GANPAT UNIVERSITY

B.Tech. Semester VI Computer Engineering/Information Technology Regular Examination May/June - 2014

2CE601/2IT601: Theory of Computation

IVLA.	A. I. 111	[Max Marks	: 70
Inst	rueti	 2. Figures to the right indicate full marks. 3. Answer both sections in separate answer sheets. 	3
		SECTION-I	
Q-1	[A]	Prove using principle of mathematical induction that for any n>=0, $\sum_{k=0}^{n} k^2 = n(n+1)(2n+1)/6$	[4]
	[B]	Draw FA corresponds to regular expression (10+00)*.	[4]
	[C]	Construct the relations with minimum elements on {1, 2, 3} that satisfy following properties. (a). No Reflexive, Symmetric, Transitive (b). No Reflexive, Symmetric, No Transitive	[4]
		OR OR	
Q-1	[A]	Suppose r is a real number other than 1. Prove using principle of mathematical induction that for any n>=0, $\sum_{k=1}^{n} r^{k} = \frac{1-r^{n+1}}{1-r}$	[4]
	гол		
,	[B]	Draw an FA for the language of all strings in {a,b}* that contain either aa or bbb.	[4]
	[C]	Write the regular expression on alphabet {0, 1} for following languages. 1. The language of all strings that begins or ends with 01. 2. The language of all strings that begins with 0.	[4]
2-2	[A]	Draw an FA for the language of all string in $\{0,1\}^*$ with odd number of 1's and even number of 0's also find regular expression.	[6]
	[B]	Write a recursive definition for the language of all string with more a's than b's and prove it using structural induction.	[5]
		OR	
)-2	[A]	Draw NFA-Null using KLEEN's theorem for expression $10(11)^* + 0*(10)*00*$. Clearly show separate NFA-Null for each step.	[6]
	[B]	Write a recursive definition of string reverse function and prove that $REV(x y) = REV(y)$ REV (x) for two strings x, y of some alphabet.	[5]
-3	[A]	For following figure draw NFA and FA accepting the same language. Also show some steps of converting following figure to NFA and FA.	[8]

[4] -

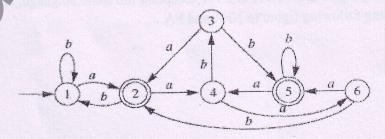
[6]

[6]

[B] In each case, say whether the statement is a tautology, a contradiction or neither. Give supporting proof.

1. Q V $(Q \rightarrow P)$ 2. $(Q \rightarrow P) \land (\neg P \rightarrow Q)$

SECTION-II


- Q-4 [A] Give transition table for deterministic PDA accepting following language: [6] $L = \{ x \in \{0,1\}^* / n_0(x) > n_1(x) \} \text{ (i.e. number of zero's are more than number of one's).}$
 - [B] Using pumping lemma for regular language prove that language $L = \{WW^r \mid W \in \{a,b\}^*\}$ is [4] not a regular language.
 - [C] Give CFG for regular expression (00+11)*(01+10)*.

OR

- Q-4 [A] Give transition table for deterministic PDA accepting following language: [6] $L = \{ x \in \{0,1\}^* / n_0(x) = n_1(x) \} \text{ (i.e. number of zero's are equal to number of one's).}$
 - Use the pumping lemma to show that following language is not context free language: $L=\{ss \mid s \in \{a,b\}^*\}.$
 - [C] Explain Chomsky Hierarchy of Grammar. [2]
- Q-5 [A] Draw a Turing Machine to accept language generated by grammar S->^|a|b|aSa|bSb. [6]
 - [B] Explain derivation tree, left most derivation, right most derivation and ambiguity in grammar [5] with Example.

OR

- O-5 [A] Draw a Turning Machine for language $L = \{0^n 1^m \mid n \le m \text{ and } n \ge 0\}$. [6]
 - [B] Give CFG for following languages: [5]
 - 1. L={ $I^{i} J^{j} K^{k}$ | i=j or i=k and i, j, k>=1}
 - 2. $L = \{0^k 1^j | k < 2j\}$
- Q-6 [A] Convert the following CFG to Chomsky normal form (CNF) $S \rightarrow AACD$, $A \rightarrow aAb \mid \Lambda$, $C \rightarrow aC \mid a \mid A$, $D \rightarrow aDa \mid bDb \mid \Lambda$
 - [B] For the following FA find the minimum state FA accepting the same language.

End of Paper

Page 2 of 2