Total Marks: 70

GANPAT UNIVERSITY

B. Tech. Semester: VI Computer Engineering/Information Technology

CBCS Regular Examination April - June 2016

2CE604/2IT604: Design & Analysis of Algorithms

Time: 3 Hours

0

Instructions: 1. Attempt all questions.

- 2. Figures to the right indicate full marks.
- 3. Each section should be written in a separate answer book.

4. Assume necessary data when needed.

SECTION-I

		DECTION-1				
Que.	1 [A	<pre>] Calculate time complexity for following algorithm using tabular method. Algorithm complexity(){ for(int i=1;i<=n;i++){ for(int j=1;j<n;j=j*3){ printf("Hello world"); } } }</n;j=j*3){ </pre>	[3]			
Espirit	[B]	Express complexity of following functions using theta(Θ) notation. Clearly indicates value of constants c_1 , c_2 and n_0 . i. $f(n) = 3n^3 2^n + 5n^2 3^n$ ii. $f(n) = 2n^2 2^n + n \lg n$ iii. $f(n) = n^{2.5} + n \lg n$	[9]			
One 1	FAJ	OR				
Que.1	[A]	Briefly explain time and space complexity of an algorithm. Write recursive				
	[B]	Check whether following statements are true or false. Justify your answer. i. $n^2 \lg n \neq \Theta(n^2)$ ii. $n^2 / \lg n \neq \Theta(n^2)$	[6]			
Que.2	[A]	Solve the following recurrence using homogeneous recurrence method. $F_n = \begin{cases} n & , \text{ if } n = 0 \text{ or } 1 \\ F_{n-1} + F_{n-2} & , \text{ otherwise} \end{cases}$	[6]			
	[B]	Solve the following recurrence using intelligent guesswork method. $f(n) = \begin{cases} 0 , \text{ if } n = 0 \\ n^3 + f(n-1) , \text{ if } n > 0 \end{cases}$	[5]			
Que.2	[]]	Colver the Fell				
		solve the following recurrence using inhomogeneous recurrence method. $t_n = 2t_{n-1} + (n+5) 3^n$	[5]			
	[B]	Solve the following recurrence using change of variable method. $T(n) = \begin{cases} 1 & , \text{ if } n = 1 \\ 3T\left(\frac{n}{2}\right) + n & , \text{ if } n \text{ is a power of } 2, n > 1 \end{cases}$	[6]			
Que.3	[A] [B] [C]	Solve the recurrence using master theorem method: $T(n) = 3T(n/4) + n \lg n$ Solve the recurrence using recursion tree method: $T(n) = 4T(n/2) + n^3$ Prove that $2^{n+1} = O(2^n)$ but $2^{2n} \neq O(2^n)$	[4] [4] [4]			

Page 1 of 2

SECTION - II

- Explain divide & conquer method using merge sort algorithm and solve Que.4 [A] recurrence relation of merge sort.
 - Briefly explain breadth first search with example. [B]

- Oue.4 Solve recurrence relation of quick sort algorithm for worst case. On what kind of [A] input the worst case of quick sort occurs? How it can be solved using randomized version of quick sort?
 - Explain use of branch & bound technique for solving assignment problem. [B]
 - [C] Differentiate between class P and class NP problems.
- Apply dynamic programming algorithm to construct table for change of amount Que.5 [A] [3] 11 with coins of denomination 1, 5, 6 and 8.
 - Write greedy algorithm for fractional knapsack problem. Apply it to solve [B] fractional knapsack problem as shown in Table 1 where p is profit and w is weight of each item and M is knapsack capacity. Take M=30.

Table 1							
n	n ₁	n ₂	n ₃	n ₄			
pi	50	140	60	60			
Wi	5	20	10	12			

[C] How to use adjacency list for graph representation?

OR

- On which kind of problems dynamic programming can be applied? Explain Que.5 [A] [5] memoization with example.
 - What is minimum spanning tree? Apply kruskal's algorithm on the graph as [B] [6] shown in Fig.1 to construct minimum spanning tree and write its time complexity.

- Que.6 [A] For the following matrices find the order of parenthesization for the optimal chained multiplication using dynamic programming. Matrices: P: 15 x 5, Q: 5 x 10, R: 10 x 20, S: 20 x 25
 - Show the working of counting inversion algorithm on given input sequence and [B]
 - find total number of inversions: 11, 3, 1, 2, 4, 14, 9, 7
 - [C] Briefly explain greedy algorithm for activity selection problem.

END OF PAPER

[1]

[6,

[4]

[2]

[7]

[7]

[3]

[2]