Total Marks: 70

4

4

GANPAT UNIVERSITY

B. Tech. Semester: VI (Computer Engineering/Information Technology)

Regular Examination April – June 2016

2CE601/2IT601: Theory of Computation

Time: 3 Hours

Instruction:

- This paper contains two sections. Attempt each section in separate answer sheet.
- Figure to right indicate full marks. -
- Be precise and to the point in answer.
- Assume suitable data if require.

Section - I

Oue. -1

0

- Suppose A is a set having 5 elements. A
 - a. How many reflexive relations are there on A?
 - b. How many symmetric relations are there on A?
 - c. How many relations are there on A that are both reflexive and symmetric?
 - d. How many Anti symmetric relations are there?
- By using the induction theorem show that $1^2 + 2^2 + \dots + n^2 = n(n + 1)(2n + 1)/6$ B
- Proof by contradiction that the square root of 2 is irrational i.e. there are no 4 C positive integers m and n satisfying $m/n = \sqrt{2}$.

OR

Oue. - 1

- Define strong principle of mathematical induction and by using this show that 4 A integer bigger than 2 have prime factorizations. 4
- Define tautology, contingency and contradiction. Using identities prove that: B $Q \lor (P \land \sim Q) \lor \sim P \land \sim Q$ is a tautology
- Of the 200 candidates who were interviewed for a position at a call center, 100 4 had a two-wheeler, 70 had a credit card and 140 had a mobile phone. 40 of them C had both, a two-wheeler and a credit card, 30 had both, a credit card and a mobile phone and 60 had both, a two wheeler and mobile phone and 10 had all three. How many candidates had none of the three?

Que.-2

- In each case, find a string of minimum length in {a, b}* not in the language 6 A corresponding to the given regular expression.
 - 1. b* (a + ba)* b*
 - 2. a* (baa*)* b*
- Let M1 and M2 be the DFAs as shown in the following diagram, recognizing 3 B languages L1 and L2 respectively. Perform M1 U M2 to recognize L1 U L2.

Page 1 of 3

C Construct the DFA for the language of all the strings containing neither substring 00 nor 11 over alphabet set $\Sigma = \{0, 1\}$.

2

6

5

3

3

OR

Que. -2

A Draw an NFA for the NFA-ε as shown in the following figure.

B Perform minimization on following DFA :

Que. - 3

- A Show the step by step procedure to draw an NFA- ε for the regular expression 6 $(0+1)(01)^*(011)^*$ using Kleene's Theorem.
- B Draw the NFA for the regular expression $(a + b)^*$ $(abb + ababa) (a + b)^*$.
- C Calculate $\delta^*(q0, ab)$ for the following NFA- ϵ .

Section - II

Que. -

10

Que4			
	A	Using pumping lemma show that $L = \{a^n n \text{ is a prime number}\}$ is not a regular language.	4
	B	Remove the useless-productions from the following grammar G: G: $S \rightarrow A \mid C$ $B \rightarrow bB \mid cB \mid a$ $A \rightarrow b$	4
	C	 Derive the left most derivation and draw the parse tree to the string "aabbbb" for the following grammar G: G: S → AB ε A → aB 	4
		$B \rightarrow Sb$ OR	
Oue4			
	A	Remove the unit-productions from the following grammar: $S \rightarrow Aa \mid B$ $B \rightarrow A \mid bb$ $A \rightarrow a \mid bc \mid B$	4
	В	Remove ε -productions from the following grammar: S \rightarrow aS AC AB	4
		$A \rightarrow \varepsilon$ $C \rightarrow \varepsilon$ $B \rightarrow bB \mid bb$	
	С	Find the language L generated by the following grammars: a) $S \rightarrow X$ $X \rightarrow aXb aX a$	4
		b) $S \rightarrow aS bS a b$	
Que5	A	Design the PDA for the following Languages:	8
		a. $L = \{n_a(w) = n_b(w)\}$ b. $L = \{a^n b^n n \ge 0\}$	
	В	Using pumping lemma prove that the language $L = \{0^n 1^n 2^n n \ge 1\}$ is not a Context-free Language.	3
		OR	
Que 5			
	A	Design the PDA for the language $L = \{a^n b^m n > m \text{ and } m, n \ge 1\}$	4
	B	Design a Turing Machine to compute m-n where m, n are positive integers.	4
	С	Prove that Context-free Languages are not closed under complementation operation.	3
Que 6			4
	A	Define Push Down Automata. Design a CFG for language: $L = \{ a^i b^j c^k d^j i, j, k, l=0,1,; i+k = j+l \}$, where the alphabet $\Sigma = \{a, b, c, d\}$.	4
	В	Design the Turing Machine for the language $L = \{0 \mid m \text{ is even}\}$. Define Universal Turing Machine.	4
	С	Explain Type-0, Type-1, Type-2 and Type-3 grammars using Chomsky classification. Find the highest type number that can be applied to the grammar G: $A \rightarrow bcA$, $B \rightarrow b$, $AB \rightarrow AbBc$	4
		END OF PAPER	

Page 3 of 3