GANPAT UNIVERSITY

B. TECH SEM. VI COMPUTER ENGINEERING/INFORMATION TECHNOLOGY REGULAR EXAMINATION APRIL-JUNE 2017 2CE601/2IT601: THEORY OF COMPUTATION

Time: 3 Hours

Total Marks: 60

- **Instructions:** (1) This Question paper has two sections. Attempt each section in separate answer book. (2) Figures on right indicate marks.
 - (3) Be precise and to the point in answering the descriptive questions.

SECTION - I

- Q.1 (A) Let G(x): x is a gold ornament, S(x): x is a silver ornament and P(x): x is precious. (6) Translate the following logical notations into the statement.
 - 1. $\forall x(P(x) \rightarrow (G(x) \land S(x)))$
 - 2. $\forall x((G(x) \land S(x)) \rightarrow P(x))$
 - 3. $\exists x((G(x) \land S(x)) \rightarrow P(x))$
 - (B) Using principle of mathematical induction, prove that for every $n \ge 1$, 7 + 13 + 19 + (4)...+ (6n+1) = n (3n+4).

OR

- Q.1 (A) Construct a relation with minimum elements on {1, 2, 3} that satisfy following (6) properties:
 - 1. Reflexive, No Symmetric and No Transitive.
 - 2. No Reflexive, No Symmetric and Transitive.
 - (B) Prove that the statements $(P \lor Q) \rightarrow R$ and $(P \rightarrow R) \lor (Q \rightarrow R)$ are logically (4) equivalent.
- Q.2 (A) Convert NFA-null given in following figure A to corresponding NFA. Also show (6) how to find δ^* for any state.

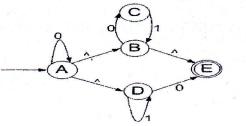


Figure A.

- (B) Find a regular expression corresponding to following regular languages. Consider Σ (4) ={0,1}
 - 1. The language of all strings containing at least two 1's.
 - 2. The language of all strings that does not end with 00.

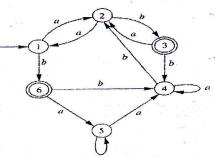
OR

- Q.2 (A) Draw an NFA corresponds to an expression $(10 + 01)^*$ 0 and find δ^* (q₀, 10). (6) Where q₀ is an initial state.
 - (B) Draw a DFA corresponds to an expression $(0+1)^* 0 (0+1)$.

(4)

- (A) Draw NFA-null for regular expression $11^* (1 + 01)^* 10$ using KLEEN's theorem. Q.3Show the construction of NFA-null at each stage of KLEENE's theorem.
 - (B) State true or false for followings:
 - 1. $0^*1^* = 0^* + 1^*$.
 - 2. If $\delta^*(q_0, 10) = \delta^*(q_0, 11)$ for any DFA then strings 10 and 11 are distinguishable strings.
 - 3. For expression 000111, we can draw NFA but can't draw DFA.
 - 4. For each regular language there is an equivalent NFA.
 - 5. $P \land \neg P$ is a tautology.
 - 6. The relation R= $\{(1, 1)\}$ on set A= $\{1, 2\}$ is reflexive but not symmetric relation.
 - Match the following pairs. (\mathbf{C})

Α.	δ function of NFA		$QX \Sigma \rightarrow Q$
B.	P→Q	2.	$QX \Sigma U\{^{\wedge}\} \rightarrow 2^{Q}$
C.	δ function of NFA - ^	3.	$QX \Sigma \rightarrow 2^Q$
	δ function of DFA	4.	$\sim Q \rightarrow \sim P$
	~(P→Q)	5.	$\sim P \vee \sim Q$
	P→~Q	6.	P ∧ ~Q
1.5	and the second se		and the second design of the s


- SECTION II
- Using pumping lemma for regular languages, prove that language $L=\{0^n11^n|n \ge 10^n11^n|n \ge 10^n|n \ge 10^n11^n|n \ge 10^n11^n|n \ge 10^n|n \ge$ (5) (A) Q.4 0} is not a regular language.
 - (B) Design the TM for the language $L = \{\{a, b\}^* \{aba\} \{a, b\}^*\}$.

OR

Using pumping lemma for context free languages, prove that following language (5) Q.4 (A) is not a context free language. $L = \{ww | w \in \{a, b\}^*\}.$

(B) Design the TM for the language $L = \{ \{a, b\}^* \{aba\} \}$.

(A) For the following DFA find a minimum state DFA recognizing the same (5) Q.5 language.

(5) Explain Chomsky hierarchy of grammars in detail. **(B)**

(4)

OR

Write a CFG for language $L = \{0^i 1^j 0^k | j > i+k\}$. (6) Q.5 (A)

- (B) Remove null productions from the following grammar and rewrite it. (4) $S \rightarrow SQ | QQP | Pab | Q$ P→Pa | QPa | a $Q \rightarrow Pb |Qa|^{\wedge}$
- (A) Design the push down automata for the language $L=\{wcw^r | w \in \{a, b\}^*\}$. (6) Q.6

(B) Write CFG equivalent to regular expression $01 (00+10)^* 110^*$.

(3)

. (3)

(5)

(5)

(4