Student Exam No.

[Total Marks: 70]

GANPAT UNIVERSITY

B. Tech. Semester VII (Computer Engineering/ Information Technology) Regular Examination November-December 2013 2CE703/2IT703: Artificial Intelligence

[Time: 3 Hours] Instructions:

	1. Figures to the right indicate full marks	
	2. Each section should be written in a separate answer book	
	3. Be precise and to the point in your answer	
	SECTION	
0-1	Answer the following:	
(a)	Discuss the problem characteristics for the following:	[8]
()	i. Tower of Hanoi	Iol
	ii. Tic-Tac-Toe	
(b)	Write an advantage and disadvantage of DFS and BFS.	[4]
	OR	1.1
Q-1	Answer the following:	
(a)	What is Problem Reduction? Discuss AND-OR Graphs with suitable example.	[6]
(b)	Discuss Best First Search Technique.	[6]
Q-2	Answer the following:	
(a)	Explain A*algorithm in detail.	[6]
(b)	When h'(n) overestimate h(n). Discuss with suitable example.	[5]
Q-2	Answer the following:	
(a)	Explain Steepest Ascent Hill Climbing in detail.	[6]
(b)	When h'(n) underestimate h(n). Discuss with suitable example.	[5]
Q-3	Answer the following:	
(a)	Define: Heuristic search technique	[2]
(b)	When Hill climbing will be fail. Which are the solutions to overcome to those problems? Explain with Block World Problem	[6]
(e)	Write an output of following programs (assume domains and predicates)	[4]
(0)	%goal :- start %goal :- go	171
	start:- go:-	
	write("1"), write("HELLO"), test, write("UVPCE").	
	go, !. go:-	
	start:- write("7th CE-IT"),test.	
	write("2"), !. test:-	
	go.!, fail, write("TEST1").	
	test:-	
	tail. write("TEST2").	OT O
		(P.1.0)

Student Exam No._

SECTION-II

Q-4

Answer the following: Trace the constraint satisfaction procedure to solve the following cryptarithmetic [8] (a) problem:

	CROSS + POADS	
	TRUADS	
(b)	D A N G E R Compare Propositional Logic and Predicate Logic. OR	[4]
Q-4 (a)	 Answer the following: Consider the following sentences: i. John like all kinds of food. ii. Apples are food. iii. Chicken is food. iv. Anything anyone eats and isn't killed by is food. v. Bill eats peanuts and is still alive. Give following answers. i. Translate these sentences into formulas in predicate logic. ii. Prove that John likes peanuts using backward chaining. iii. Convert the formulas of part (i) into clause form. 	[8]
(b)	iv. Prove that john likes peanuts using resolution. Discuss Resolution in propositional Logic.	[4]
Q-5 (a) (b)	Answer the following: Discuss alpha-Beta Cutoff with suitable example. Write the examples where hill climbing and best first search behave (a) similarly (b) differently.	[6] [5]
Q-5 (a)	Answer the following: Suggest the strategy to solve the Tic-Tac-Toe problem. Define heuristic for that.	[6]
(b)	Derive the complete procedure to play the game. When would best first search be worse than a simple breadth first search?	[5]
Q-6 (a) (b) (c)	Answer the following: Prove Fuzzy De Morgan's law: $(A \cap B) = (A^{C} \dot{U} B^{C})^{C}$ Discuss: Semantic Nets Solve degree of subset hood using Fit-Violation theorem. X1 X2 X3 X4 X5	[5] [4] [3]
	A 0.2 0.6 0.7 0.9 0 B 0.3 0.5 0.2 0.8 1	
	End of Paper	