Student Exam No.

GANPAT UNIVERSITY

B. Tech. Semester: VII (CE/IT) Engineering

Regular Examination November – December 2013

2CE703/2IT703 - DATA MINING & DATA WARE HOUSING

Time: 3 Hours]

B

[Total Marks: 70

6

6

6

6

5

Instruction: 1 Attempt all Questions.

- 2 Figures to the right indicate full marks of the question.
- 3 Each Section should be written in separate answer book.

Section - I

- Q.1 A Explain star, snowflake and galaxy schemas with the help of suitable example. Also write DMQL for snowflake schema to define cube and its dimensions.
 - B Explain ROCK algorithm for clustering with the help of an example.

OR

- Q.1 A What are the major challenges in data mining?
 - B Explain DBSCAN algorithm for clustering with the help of an example.
- Q.2 A Explain different approaches to mining multilevel association rules with the help of 6 suitable examples.
 - B Explain Minkowski distance to measure distance between 2 objects. Also compute 5 distance measure for p=1 and p=2 for the following two objects: X1=(2,3,5) and X2=(4,2,7)

OR

0.2 A Explain various data transformation techniques

	Al	A2	A3	A4	A5	A6
01	True	True	True	False	False	True
02	False	True	True	False	True	False

For the above given objects having asymmetric attributes, where True is more significant than False; find a)Dissimilarity measure and b) Jaccard coefficient.

- **Q.3** A Explain various OLAP operations performed on data cube with examples.
- 6

B For the given distance matrix apply agglomerative hierarchical clustering using: a) Single-link b) complete-link

c) Plot the dendograms for the solutions to part a) and b).

2		

	A	B	C	D
A	0	4	5	1
В		0	6	2
С			0	3
D				0

Section - II

8

8

4

6

Q.4 A Use the k-medoid algorithm to cluster the following 8 objects into three clusters. X1=(2,5), X2=(2,10), X3=(8,4), X4=(5,8), X5=(7,5), X6=(6,4), X7=(4,9), X8=(1,2).

Take initial clusters as X2, X4 and X8 and distance measure as Manhattan distance.

1)Find final three clusters and their medoids formed after 2 iterations.

B What are the various forms of data preprocessing?

OR

- Q.4 A Use the k-means algorithm to cluster the following 8 objects into three clusters. X1=(2,5), X2=(2,10), X3=(8,4), X4=(5,8), X5=(7,5), X6=(6,4), X7=(4,9), X8=(1,2).
 Take initial clusters as X2, X4 and X8 and distance measure as Euclidean distance. 1)Find final three clusters and their centroids formed after 3 iterations.
 - **B** Differentiate between OLTP and OLAP.
- Q.5 A Explain market basket analysis with the help of an example.
 B What are the various methods to fill inising values in the process of data cleaning?
 5

OR

- Q.5 A What are the various types of data used in clustering analysis?
 B Explain Data warehouse and Data mart. What are the various features of data 5 warehouse?
- Q.6 A Given Minimum Support count=3, find frequent itemsets for the example given below using **FP-Growth** algorithm.

Transaction ID	List of items
T1	$\{g,b,d,e,h,j,n,a\}$
T2	$\{b,c,d,g,m,n,p\}$
Т3	$\{c,g,i,k,p\}$
T4	{c,d,l,t,a}
T5	$\{b,g,d,f,m,a,n,o\}$

B Given minimum support as 40% and minimum confidence as 80%. Find out the frequent itemsets and strong association rules for the example given below using Apriori algorithm.

END OF PAPER Page 2 of 2