GANPAT UNIVERSITY

B. Tech. Semester: Sem-VII

(Information Technology/Computer Engineering) Engineering Regular / Remedial Examination Nov-Dec 2016 2CE703/2IT703 Data Mining & Data Warehousing Total Marks: 70 Time: 3 Hours

Oue. - 1

(A)	Explain Data Mining as a step in the process of knowledge	[4]
	discovery.	E 4 1
(B)	Discuss in Detail with example:	[4]
	I. ROLLUP OPERATION	
(0)	II. SLICE AND DICE OPERATION Given 1 dimensional data set $Y = \{-5, 0, 23, 0, 17, 6, 9, 23, 1, 11\}$	[4]
(C)	normalize the data set using	E Ca
	i)Min-Max Normalization[0,1]	
	ii) Min-Max Normalization[-1,1]	
	OR	

Que. - 1

(A)	What are the major issues in Data Mining?	[4]
(B)	Explain smoothing, Aggregation, Generalization and	[4]
• •	Normalization with suitable Example.	
(C)	Explain six methods to fill Missing Values in database.	[4]

- Oue. 2
 - Explain Mining Frequent Item sets Using Vertical Data Format [3] (A) (ECLAT).
 - A database has five transactions. Let min sup = 60% and min [8] **(B)** conf = 80%. Find all frequent itemsets using apriori and FPgrowth, respectively. Compare the efficiency of the two mining processes.

TID	items bought
T100	{M, O, N, K, E, Y}
T200	{D, O, N, K, E, Y }
T300	{M, A, K, E}
T400	{M, U, C, K, Y}
T500	{C, O, O, K, I,E}

OR

Que. - 2

- Explain Confusion matrix for evaluating performance of classifier [4] (A) accuracy. [4]
- How rules are extracted from decision tree? **(B)**
- Define multilevel association rules, Multidimensional association [3] (C) rules.

Oue. - 3

Here 2 *2 contingency table with summarizing the transactions [6] (A)

1 | Page of 4

with respect to game and video purchases. Find out 2, Cosine, All-Conf, Lift.

as (perso	game	game	Srow
video	4,000	3,500	7,500
video	2,000	500	2,500
Scol	6,000	4,000	10,000

(B)

Find out the gain for age, Income, Student, Credit_Rating and predict the root node. Predict a class label of an unknown tuple X= {age ='<=20', Income= `Medium', Student='Yes', Credit_Rating='Fair'} using Naïve Bayesian Classification.

Age	Income	Studen t	Credit_rating	Class: Buys Laptop
>30	Medium	No	Excellent	No
<=20	High	No	Fair	No
2130	High	Yes	Fair	Yes
<=20	High	No	Excellent	No
2130	Medium	No	Excellent	Yes
2130	High	No	Fair	Yes
<=20	Medium	Yes	Excellent	Yes
>30	Medium	No	Fair	Yes
>30	Medium	Yes	Fair	Yes
>30	Low	Yes	Fair	Yes
<=20	Low	Yes	Fair	Yes
>30	Low	Yes	Excellent	No
2130	Low	Yes	Excellent	Yes
<=20	Medium	No	Fair	No

Student Exam No.

Section -II

vue 4		
(A) (B)	Explain difference between OLAP and OLTP? Explain Stars, Snowflakes, and Fact Constellations Schemas for Multidimensional Databases with Diagram. OR	[e] [e]
Que, - 4		
(A) (B)	Explain the architecture of Data Warehouse. Describe difference between single linkage algorithm and complete linkage algorithm.	[6] [6]
Que 5	internetical part of the star was been formation and the second starting of the	
(A)	Given the samples $X1 = \{1, 0\}$, $X2 = \{0, 1\}$, $X3 = \{2, 1\}$, and $X4 = \{3, 3\}$. Suppose that samples are randomly clustered into two clusters $C1 = \{X1, X3\}$ and $C2 = \{X2, X4\}$.	[6]
	a) Apply one iteration of K-means partitional clustering algorithm, and find a new distribution	

-) Apply one iteration of K-means partitional clustering algorithm, and find a new distribution of samples in clusters. What are the new centroids? How you can prove that the new distribution of samples is better than the initial one?
- b) What is the change in a total square error?
- c) Apply the second iteration of K-means algorithm and discuss the changes in clusters.
- (B) Create student.arff file having following details. Attributes→ sub1 sub2 sub3 sub4 sub5 The numeric value of rank should be given to each subject. The detail is given below. 1-poor, 2-satisfactory, 3-average, 4-good, 5-excellent. Enter at least 10 records

OR

- Que. 5
 - (A) Suppose that a patient record table contains the [6] attributes name, gender, fever, cough, test-1, test-2, test-3, and test-4, where name is an object identifier, gender is a symmetric attribute, and the remaining attributes are asymmetric binary. Find the Jaccard coefficients.

name	gender	fever	cough	test-1	test-2	test-3	test-4
Jack	М	Y	N	р	N	N	N
Mary	h	Y	N	р	N	р	N
Jim	М	Y	Y	N	N	N	N
÷	:	÷	:	÷		:	4" * *

A relational table where patients are described by binary attributes.

(B)

Explain decision tree induction with example.

[5]

[5]

3 | Page of 4

Table

- Que.- 6
 - (A) Explain Interval-Scaled Variables, Categorical, Ordinal, and [6] Ratio-Scaled Variables with suitable example.

(B)

Explain the Balanced Iterative Reducing and Clustering Using [6] Hierarchies. Show how effective is BIRCH? Where, C1= (2, 5), (3, 2), (4, 3) and C2= (5, 2), (2, 3), (3, 4). Show CF1, CF2 and CF3.

END OF PAPER