Student	Exam	No:		
Student	Exam	No:		

GANPAT UNIVERSITY

B. TECH SEM. VII (COMPUTER ENGINEERING / INFORMATION TECHNOLOGY) REGULAR EXAMINATION NOV-DEC – 2016

	2CE704 / 2IT704 : FUNDAMENTALS OF IMAGE PROCESSING	
Total Time: 3 hours Total		
Instructi	 Write each section in separate answer sheet. Figure to the right indicates full marks. Assume suitable data wherever necessary. 	0
	SECTION - I	
Q – 1 (a	Consider the following image segment. Let V={2, 3, 4}. Compute the lengths of shortest 4, 8 and m-path between 'P' and 'Q'. If path doesn't exists, explain why.	[6]
	(P) 3 0 4 2 1 1 2 0 3 4 1 2 0 3 4	
(b)	resident can be defined using on plane slicing.	[4]
(c)	Differentiate between radiance and luminance.	[2]
Q-1 (a)	Let P and O he the rivels at goordinates (5.5) 1 (10.15)	Q.
	Let P and Q be the pixels at coordinates (5, 5) and (10, 15) respectively. Find out which distance measure gives the minimum distance between the pixels.	[4]
(b)		[6]
(c)	Discuss one application for image averaging.	[2]
Q-2 (a)	Consider the 8-level gray scale image of size 8x8 shown in fig. (A). Show the histogram of the image. Compute equalized histogram and display graphically.	[6]
(b)	Write a brief note on components of image processing system.	[5]
	OR	[2]
	Apply 3x3 median filter on the image shown in fig. (B) on page 2.	[6]
(b)	Differentiate among computer graphics, image processing, image analysis and computer vision.	[5]
Q-3 (a)	How average intensity and intensity variance can be calculated using histogram statistics? Explain with proper example.	[4]
(b)	Discuss the following interpolation techniques: 1. Nearest neighborhood interpolation. 2. Bicubic interpolation.	[4]
(c)	Explain the effect of first order and second order derivatives on a step, ramp and constant intensity area of the image with proper example.	[4]

SECTION - II

Q -	-4 (a)	Perform the following steps on the image shown in fig (C): Step - 1: Apply dilation with structuring element shown in fig. (D). Step - 2: Apply erosion on the result of step - 1 with structuring element: [1 1 1; 1 1 1]	[6
	(b)	Explain the Otsu's method for thresholding in detail.	[6
0-	4 (a)	What is the procedure to devive the chalston 2 D	
Y		What is the procedure to derive the skeleton? Derive skeleton for the image shown in fig. (E).	[8]
	(b)	Explain the basic global thresholding algorithm.	[4
Q -	5 (a)	According to Hough transform, discuss how to find whether some set of pixels lies on the same line or not.	[6
	(b)	Write the morphological equation for Hit-or-Miss transformation. Draw the structuring elements required to detect the end point of horizontal line, vertical line and line with +45 and -45 degree angle with x-axis.	[5]
		OR OR	
Q -	5 (a)	Derive the LoG operator. Discuss the entire Marr - Hildrath edge detection algorithm.	[6]
	(b)	Discuss opening and closing morphological operation. Prove that they are dual of each other.	[5]
Q-	6 (a)	Discuss the following parameters as descriptors: 1. diameter 2. curvature	[4]
	(b)	What is non-maxima suppression? How it can be performed?	[4]
	(c)	Explain freeman chain code in short.	[2]
	(d)	What will be the output of hole-filling algorithm, when the starting pixel is selected from one	
	(4)	of the boundary pixel?	[2]
		X	
0 1	1 0	0 1 1 0 3 6 5 2 4	
0 1	2 3		
0 4	5 3	3 5 4 0 2 4 7 3 0	
0 1	2 7	7 2 1 0 3 6 5 6 2	\dashv
0 1 0 4	2 6 5 3	3 5 4 0	\dashv
0 1	2 3	3 2 1 0 Fig. (B)	
0 1	1 0	0 1 1 0 Fig. (C)	
	Fig.	. (A)	
		1 Fig. (E)	

END OF PAPER

Fig. (D)

Page 2 of 2