GANPAT UNIVERSITY

B. Tech. 3RD SEMESTER (CIVIL) Engineering

Regular Examination November – December 2013 2CI- 306 Numerical methods & Computer programming

Time: 3 Hours / As per Scheme

Max. Marks: 70

Instruction: 1) Figures to the right indicate marks.

Que.1 (A)	~ 1 1					A Transfer of the latest of th	A STATE OF THE PARTY OF THE PAR		
Server (Tr)	Solve the following systems of equation by gauss Jordan method								
	2X ₁ +4X ₂ +2X ₃ =15								
		2X ₁ +X	2+2X3=-5	5					
		4X ₁ +X	$X_2-2X_3=0$		N.				
Que.1 (B)	Given Y1	=Y-X when	e y (0) =2	. Find y (.1) and y (.2)	by using ru	nge kutta	04	
	second order.								
Que.1 (C)	Apply ta	ylors series	method o	of order th	ee to find t	he value of y	v(0.1),y(0.2)	04	
	$Y^1 = XY^{1/3} Y(1) = 1$								
	OR								
Que.1 (A)	Solve the following systems of equation by gauss Jordan method								
	$10X_1+X_2-X_3=11.19$								
	$X_1+10X_2+X_3=20.08$								
	$-X_1+X_2+10X_3=35.61$								
Que.1 (B)	Fit a straight line to the following data by the method of least								
	squares								
	X	0	5	10 1	5 20	25	30		
	Y	10	14	19 2	5 31	36	39		
One 1 (C)	Solve the following differential equation by Euler's method								
Que.1 (C)	$Y^1=X^2+Y^2$, y(0)=1 to find y(.2), y(.4), y(.6)								
Que.2 (A)	Find the first order and second order derivatives of f(x) at X=1.5								
Que.z (A)	X	1.5		2.5	3.0	3.5	4.0		
	Y	3.375	7.000	13.625		38.875	59.000		
						e eight rule t		04	

Que.2 (C)	Use Newton divided difference formula to find 1(1), 1(5)									04
	X	0	2		3		4	7	8	
	Y	4	26		58	nodi:	112	466	668	
	OR									
2 (1)	Til'd	and dogra	o norol	hola ci			followir	ng data		04
Que.2 (A)	Fit a second degree par			1 2			1011011	3	5	
				6.0		11.2		14.8	20	
	Y					using Simpsons on			taka h=1	04
Que.2 (B)	Evaluat	$e \int_0^{10} dx/($	$(1+x^2)$	2) by t	ising !	Simps	sons one	third rule	take n-1	04
Que.2 (C)	Using mines predictor –corrector method to obtain the solution of the equation $Y^1=X-Y^2$ at $x=0.8$ $y(0)=0$, $y(.2)=0.0200$, $y(.4)=0.0795$, $y(.6)=0.1762$ What is difference between linear and nonlinear equation.									03
Que.3 (A)	What is	s differenc	e betwe	een lin	iear a	nd no	nlinear	equation.		03
Que.3 (B)	Use Lagrange's interpolation formula to find the value of $Y(X) = 20$ Using the following data.									
	X	1			8		27		64	
	Y	1			2		3		4	
Que.3 (C)	Fyolus	te $\int_{0}^{2} dx/t$	$(2 + x^2)$	2) by 1	ising	Simps	sons thr	ee eighth	rule take h=1	04
Queic (o)	Evalue					CTIO		HAT FORD		
		70100		A				nimum 4 j	points)	02
Que.4 (A)	1.	Why we	inclu	de ios	trean	ı.h aı	nd coni	o.h as a h	eader files?	02
Que.4 (B)	1.	moment length.	t of a s (answe	simply er mu foll	y sup ist coi lowin	porte ntain g p	ed bean its unit rogran	n having \tag{t}	and bending JDL all over it removing th	8 02
			de <ios< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>F (309)</td></ios<>							F (309)
	4	#inclu	de <coi< td=""><td>nio.h></td><td>der de</td><td></td><td></td><td></td><td></td><td>in the second</td></coi<>	nio.h>	der de					in the second
		#inclu	de <str< td=""><td>ng.h></td><td></td><td></td><td></td><td></td><td></td><td></td></str<>	ng.h>						
		void n	nain()							
	(B) Evaluate $\int_0^{10} dx/(1+x^2)$ by using Simpsons three sight $\int_0^{10} tu u dt$									l) (sn))
	char a;									
	int b,c;									

	cin< <c<b<>a;</c<b<>						
	b=c*32;	the stransment of a page 18					
	cout< <a<<b<<c;< td=""><td>to at managing a start (0</td><td></td></a<<b<<c;<>	to at managing a start (0					
	getch ();	ahiqhia dilw.					
	}						
Que.4 (C)	1. What the applications are of obje	ect oriented programming?	02				
	2. Explain WHILE loop & FOR loop along with their syntax.						
	OR						
Que.4 (A)		oriented programming &	02				
	Procedure oriented programming. (Minimum 4 points)						
	2. What is the significance of providing getch() and clrscr()?						
Que.4 (B)	1. Write a program to calculate						
Que. (B)	output)						
	$\beta = \left(\frac{\alpha}{\sigma}\right)^8$						
	2. Find the output of the following programs. (i) (ii)						
	(i)	void main()					
	void main()	YOIU MAM()					
No. Leading		float a,b,c;					
	int a,b,c;						
10 Intern	a=1;	a=1; b=2;					
	b=2;	0-2; c=3;					
	c= (a%b)*b/9;	a=a+b*36-9*2+c;					
	cout< <c;< td=""><td>a+=2;</td><td></td></c;<>	a+=2;					
	getch();	a"=2; cout< <a;< td=""><td></td></a;<>					
		a mesenta					
		getch();					
		a } mages	02				
Que.4 (C)	1. List out the various relational						
	2. How combination of assignment operator and mathematica						
	operator is done? Give an exa	mple.	02				

Que.5 (A)	What is parameterized constructor? Describe its importance.	04		
	Write a program to calculate the sum of the following series (along with output). 1+2+3+4+			
Que.5 (C)	What is an operator overloading? Why it is necessary to overload an operator?	04		
	OR .			
Que.5(A)	What is destructor? Describe its importance.	04		
Que.5 (B)	 Write a program to find the sum of 4 digit number. Write a program to calculate the sum of numbers between 100 & 150. 	04		
Que.5(C)	What does inheritance mean in C++? What are the different forms of inheritance?			
Que.6 (A)	Define the following terms:- (any three) 1. Containership 2. Virtual base class 3. Objects 4. Message Passing 5. Data Encapsulation	06		
Que.6 (B)	Write the equivalent C++ expression for the following mathematical expression.			
Que.6 (C)	state shall be needed for successful	01		