Exam No:	

GANPAT UNIVERSITY

B. TECH SEM-IIIrd CIVIL ENGINEERING REGULAR EXAMINATION—NOV-DEC 2015

Subject Code: 2CI-306

Subject Name: Numerical methods & Computer programming

TIME: 3 HRS

TOTAL MARKS: 60

Instructions: (1) This Question paper has two sections. Attempt each section in separate answer book.

- (2) Figures on right indicate marks.
- (3) Be precise and to the point in answering the descriptive questions.

SECTION: I

Q.1 Solve the following systems of equation by Jacobi iteration method upto fourth iteration. (05)

(A)

$$10X_1+2X_2+X_3=21$$

$$X_1+10X_2-X_3=-22$$

$$-2X_1+3X_2+10X_3=22$$

Q.1 Evaluate f (153) using lagrangian interpolation formula.

(05)

(B)

X	150	152	154	156
$F(X) = \sqrt{X}$	12.247	12.329	12.410	12.490

OR

Q.1 Solve the following systems of equation by gauss elimination method

(05)

(A)

$$3x-8y+3z=1.1$$

 $2x+3y+4z=2.6$
 $9x-y+2z=5.3$

Q.1 Fit a straight line (linear regression) to the following data by the method of least squares. (05)

(B)	X	0	5	10	15	2.0	25	30
	Y	10	14	19	25	31	35	40

Q.2 Evaluate $\int_{\pi/2}^{\pi} dx/(2 + \sin x)$ by using simpson's 3/8th rule take 5 intervals.

(A)

,(1

Q.2 Solve the following differential equation by Euler's method

(05)

(05)

(B) $Y'=X^2+Y^2$, y(0)=1 to find y(0.2), y(0.4), y(0.6)

OR

Q.2 Use Newton divided difference formula to find f(1.8), f(5.5)

(05)

Tu.	10		T'a		-	10
X	0	2	3	4	1	8
V	4	26	58	111	466	668

Solve the following by using Runge kutta method (4th order):

(05)

(B) find y at x = 1.1 and 1.2 by solving $y' = x^2 + y^2$, y(1) = 2.3

Q.3 Find the roots of the following equation: (05)

(A) $5x^3 - 2x - 1 = 0$, by using bisection formula.

Q.3 Using mines predictor -corrector method to obtain the solution of the equation Y'=X-Y2 (B) at x = 0.8 y(0) = 0, y(0.1) = 0.0230, y(0.2) = 0.0795, y(0.3) = 0.1825

(05)

SECTION: II

Q.4 What is object-oriented programming? What are the features of object-oriented

(05)

(A) programming?

Q.4 What is procedure-oriented programming? What are its main characteristics? (B)

(05)

OR

Write a program for finding out area of cylinder as shown in figure. Q.4

(A)

Q.4 Write a program for finding out moment of inertia (I) and section modulus (Z) for a

(05)

(B) rectangular section as shown in figure.

Q.5 Write a short note on: (05)

- (A)
- a) The main function
- b) Call by reference

- (05)Write a program for finding out moment of inertia (I) and section modulus (Z) for a Q.5

(B) circular section as shown in figure.

Q.5 (A)	Prepare a program for finding out stress (σ) and strain (ε) for a rectangular section.	(05			
Q.5 (B)	Explain inline function in details	(05			
Q.6 (A)	What are the benefits of object-oriented programming?	(05)			
Q.6 (B)	Prepare a program for finding out shear force, shear force at X distance, Maximum bending moment and bending moment at X distance for a given beam.				
	4 · · · · · · · · · · · · · · · · · · ·				

L L

-END OF PAPER ---