

Student Exam No.

GANPAT UNIVERSITY

B.Tech.(Civil) Sem-IV

CBCS Regular Theory Examination – April-June-2017

2CI 405 Fluid Mechanics-II

Time: 3 Hours

Total Marks: 60

5

5

5

10

- Instruction: 1 Answer to the two sections must be written in separate answer books.
 - 2 Assume suitable data if required.
 - 3 Figures to the right indicate full marks

Section-I

- Q-1(a) Define 'Viscosity'. State the different viscosity meters for the measurement of 5 viscosity. Draw sketch of 'Falling sphere viscometer'.
- Describe 'Reynold's experiment with a neat sketch showing details. State the Q-1(b) 5 inferences drawn.

OR

- Q-1(a) Prove that in laminar flow through a circular pipe, velocity distribution is parabolic. 5
- An oil of viscosity 9 poise and sp. Gravity 0.9 is flowing through a horizontal pipe Q-1(b)5 of 60 cm dia. If the pressure drop in 100 m length is 1800 kN/m^2 , Determine:-[i] The rate of flow of oil

[ii] The centre-line velocity

- Define and differentiate 'Open Channel flow' and 'Flow through Pipe'. Q-2(a)
- Q-2(b) What is 'Hydraulic Jump'? State the assumptions made in the analysis of 'Hydraulic Jump'.

OR

- Q-2(a) What is meant by 'Most Economical Channel Section'? Derive the conditions for 5 the most economical section for the Rectangular channel.
- Q-2(b) A trapezoidal channel has side slopes of 3 horizontal to 4 vertical and bed slope is 1 in 2000. Determine the optimum dimensions of the channel if it is to carry discharge of 0.5 m³/s. Take Chezy's constant C as 50.

Q-3 Attempt any two:

- (1) Applications of 'hydraulic Jump'.
- (2)Define 'Specific Energy' and draw a typical Specific Energy Curve'
- (3)Water is to be supplied to the inhabitants of a college campus through a supply main. The following data is given: [i] Distance of the reservoir from the campus=4000 m [ii] Number of inhabitants=5000 [iii] Per capita Consumption of water=150 lpd [iv] Loss of head due to friction=20 m [v] Co-efficient of friction of pipe f=0.0075 If the half of the daily supply is pumped in 6 hrs, Determine the size of the supply main.

Section-II

O-4(a)	State the methods of describing Fluid motion. Differentiate these methods.	3
Q-4(b)	What is meant by the term 'Dimensional Homogeneity'? Describe the Rayleigh's method for dimensional analysis.	5
	OR	
Q-4(a)	Define 'laminar' and turbulent flow'. Differentiate the characteristics of Laminar and Turbulent flow.	5
Q-4(b)	State & explain Buckingham's π – theorem.	5
Q-5(a)	Define following: [i] Stream line [ii] Stream Tube [iii] streak line [iv] Velocity potential [v] Stream function	5
Q-5(b)	The velocity components in a fluid flow are given by: $u = 2xy; v = a^2 + x^2 - y^2$ [i] Show that the flow is possible [ii] Derive the relative stream function	5
	OR	
Q-5(a)	Using Buckingham's π -theorem, show that the velocity through a circular orifice is given by: $V = \sqrt{2gH} \varphi \left[\frac{D}{H}, \frac{\mu}{\rho V H}\right]$; where, H=head causing flow, D=Dia of Orifice, μ = Co-efficient of viscosity, ρ = mass density and g= gravitational acceleration	5
Q-5(b)	Derive the expression [Darcy-Weisbach equation] for loss of head due to friction in pipe flow.	5
Q-6	Write a short note on [Any Two]:	10

- (1) Methods of controlling the Boundary Layer separation
- (2) Uses and limitations of 'Flownet'
- (3) Assumptions made in deriving 'Bernoulli's equation'.

END OF PAPER