Student Exam No.

GANPAT UNIVERSITY B. Tech. Semester: VIII (CIVIL) Engineering Regular Examination April-June 2017 2CI808 ELECTIVE PAPER – II DESIGN OF EARTHQUAKE RESISTANT STRUCTURES - II

Time: 3 Hours / As per Scheme

Instructions:

Total Marks: 70

- This Question paper has two sections. Attempt each section in separate answer book.
- (2) Assume suitable data if required and mention it clearly.
- (3) Figures on right indicate marks.
- (4) Be precise and to the point in answering the descriptive questions.
- (5) IS 1893 (Part-1) : 2002 and IS 875 (Part-3) : 1987 is allowed

Section - I

Que.-1 (A) Calculate base shear for the sis storey RC frame building for hospital (11) located at Mehsana, using seismic coefficient method for the following data:

Number of bay in X direction : 6	Number of bay in Y direction : 4
Bay width : 4m in both direction	Storey Height : 3.5m
Slab Thickness : 0.15m	Beam Size : 0.23 m X 0.45 m
Column Size : 0.3 m X 0.6 m	Live Load : 4 kN/m ²
Internal wall thickness : 0.115 m	External wall thickness : 0.230 m

Assume suitable data if required. Give your calculation with appropriate clause number of IS code. Also draw distribution of shear at each floor level

OR

- Que.-1 (A) Explain Modal Analysis for different types of buildings. Enlist the steps (06) for computation of different quantities of modal analysis.
 - (B) Explain effect of Irregularities on performance of RC buildings.

(05)

Page 1 of 3

- Que.-2 (A) Determine the magnification factor of forced vibration produced by an (06) oscillator fixed at the middle of the beam at a speed of 600rpm. The weight concentrated at the middle if the beam is W = 5000 N and produces a static deflection of the beam equal to 0.025cm. neglect the weight of beam and assume that the damping coefficient is equal to 20Ns/mm.
 - (B) Which type of precaution is required if machine foundation is not (06) provided?

OR

- Que.-2 (A) The spring mass system is deflected by static deflection and release to (04) vibrate, it vibrates with 3 Hertz. When additional mass of 10 kg added and repeated the procedure, the spring mass vibrates with 2.5 Hertz. Calculate the stiffness of the spring and mass.
 - (B) Calculate natural frequency of a simply supported beam of span length (04) 'L'm having mass 'm' at distance 'a' from its left end. The rectangular beam has size 'b X d'. If mass 'm' is acting at 'L/2' distance what is the ratio of frequency for both the system.
 - (C) Define the term multi degree freedom system. Derive the equation of (04) motion for multi degree freedom system.
- Que.-3 Calculate natural frequency and corresponding mode shapes for the (12) system as given below. Normalize modes so that $M_n = 1$. Also verify orthogonal condition.

Storey No.	Mass 'm' in kg	Stiffness 'k' in kN/m
1	23625	5526
2	11475	7974

Page 2 of 3

		Section – II	
Que	4 (A) Explain in brief	
		I. Shear Wall	(06)
		II. Condition Assessment	
		III. $P-\Delta$ effect	
	(B)	Explain in detail column jacketing	(0.0)
	× .	OR	(06)
Que4	(A) (B)	What is difference between repair, retrofit and rehabilitation Derive the equation of motion for single degree free damped vibration system.	(06) (06)
Que.–5	(A)	Explain in detail classification of retrofitting technique	
	(B)	Write a short note on methods for retrofitting of masonry building.	(06) (06)
One 5	(1)	OR	
Que5	(A)	Explain RCC beam retrofitting techniques.	(06)
٠	<u>(</u> <u>B</u>)	Write a short note on retrofitting using Fiber Reinforced Polymer.	(06)
Que6	(A)	Write a short note on structural control system.	(05)
	(B)	Explain Viscous, and Tune mass damper in detail.	(06)

---- END OF PAPER ----

Page 3 of 3