GANPAT UNIVERSITY

B.TECH. (EC) SEM. - III REGULAR THEORY SUBJECT: 2HS301 ENGINEERING MATHEMATICS - III NOVEMBER – DECEMBER 2011

TIME: - 3 HOURS MARKS: 70 **INSTRUCTIONS:**

TOTAL

- 1. All questions are compulsory.
- 2. Write answer of each section in separate answer books
- 3. Figures to the right indicate marks of questions.

SECTION

Que-1

(12)

[A] Derive
$$L\{\sin at\}$$
 and find $L^{-1}\left\{\frac{1}{s(s^2+a^2)}\right\}$

[B] Find: (1)
$$L\{e^{3t} \sin 2t \cos 3t\}$$

$$(2) \quad L^{-1}\left\{\log\left(1-\frac{1}{S^2}\right)\right\}$$

[C] Use transform method to solve:

$$y'' - 3y'' - y' - 2y = 4t + e^{3t}$$
; $y(0) = 1$, $y'(0) = -1$.

OR

Que-1

(12)

[A] If
$$L\{f(t)\} = \overline{f(S)}$$
 then Prove that $L\{t^n f(t)\} = (-1)^n \frac{d^n}{dS^n} [\overline{f(S)}]$; where $n = 1/2/3$

[B] Find: (1)
$$L\left\{\frac{\sin at}{t}\right\}$$

(1)
$$L\left\{\frac{\sin at}{t}\right\}$$
 (2) $L^{-1}\left\{\frac{S}{S^4+4}\right\}$

Define unit step function. Express given function in terms of the unit step function

Hence obtain its Laplace transform.
$$f(t) = \begin{cases} S \text{ int } ; & t < \pi \\ t & ; & t \ge \pi \end{cases}$$

Que-2

- [A] Find a Fourier series for the function: $f(x) = x^2 2$, $-2 \le x \le 2$
- [B] Find a Fourier series to represent $f(x) = x x^2$, $-\pi \le x \le \pi$ Hence show that $\frac{\pi^2}{12} = \frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + ---$
- [C] Find the half range sine series for $f(x) = \begin{cases} \frac{\pi x}{4} & \text{; } 0 \le x \le \frac{\pi}{4} \\ \frac{\pi(\pi x)}{4} & \text{; } \frac{\pi}{2} \le x \le \pi \end{cases}$ (04)

OR

Que-2

- [A] Find a Fourier series to represent: $f(x) = x^2$, $-\pi \le x \le \pi$ (03) Hence deduce that : $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$...
- [B] Find a Fourier series for the function : $f(x) = \begin{cases} -x & ; & -\pi \le x \le 0 \\ x & ; & 0 \le x \le \pi \end{cases}$ Hence deduce that : $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$ (04)
- [C] Find the half range sine series to represent $f(x) = x \sin x$, $0 < x < \pi$ (04)

Que-3 Attempt any three:

(12)

- [A] State and Prove convolution theorem
- [B] Find: (1) $L\{t e^{2t} \cos 3t\}$ (2) $L\{\sinh 4t \sinh 2t\}$
- [C] Find a Fourier series to represent the function $f(x) = x \sin x$, $-\pi \le x \le \pi$
- [D] Find the half range sine series for $f(x) = \begin{cases} x & ; & 0 \le x \le \frac{\pi}{2} \\ \pi x & ; & \frac{\pi}{2} \le x \le \pi \end{cases}$

SECTION - II

0				
1)	11	e	_	4
~	u	-		•

(12)

- [A] Find the root of $f(x) = x^3 x 1$, using Newton Raphson method correct up to three decimal places, taking initial point a = 3.
- [B] Find the root of $\frac{dy}{dx} = \frac{y-x}{\sqrt{xy}}$, y(1) = 2, using Euler's method at x = 1.5 in five steps.
- [C] Solve the following system of linear equations using Gauss Seidel method 27x + 6y z = 85, 6x + 5y + 2z = 72, x + y + 54z = 110

OR

Que-4

(12)

- [A] Find the root of equation $x^3 3x + 4 = 0$ by using False Position method correct up to three decimal places.
- [B] Obtain Picard's second approximate solution of the initial value problem $\frac{dy}{dx} = x^2 + y^2, \ y(0) = 0 \text{ For } x = 0.4 \text{ correct to four decimal places.}$
- [C] Solve the following system of linear equations using Gauss Jorden method 2x + y + 4z = 12, 8x 3y + 2z = 20, 4x + 11y z = 33.

Que-5

[A] State & Prove Cauchy's theorem.

[C] Evaluate: $\int_{0}^{\infty} \frac{dz}{z^2 + 2z}$ where c is the circle |z-2| = 1

(03)

(04)

- [B] If f(z) = u + iv is an analytic function of z then find f(z) where $u v = e^x (Cosy Siny)$
 - (04)

OR

Que-5

- [A] Find the Bilinear transformation which maps the points z = 2, i, -2 in to the points w = 1, i, -1
- [B] Find an analytic function whose imaginary part is $(x^2 y^2) + \frac{x}{x^2 + y^2}$ (04)

[C] Evaluate:
$$\int_{c}^{c} \frac{z^2 + z + 1}{z^2 - 7z + 2} dz$$
 where c is the ellipse $4x^2 + 9y^2 = 1$

Que-6 Attempt any three:

(12)

[A] Evaluate: $\int_{0}^{\frac{\pi}{2}} \sin x \, dx$ by Simpson's one third rule using 11 ordinates

[B] Find f'(2) & f''(2) from the following observation table

X	1.5	2.0	2.5	3.0	3.5	40
У	3.375	7.0	13.625	24.0	38.875	59.0

[C] Following table gives the population of town. Find the increases in population during 1946 to 1948.

X	1911	1921	1931	1941	1951	1961
<u>Y</u>	12	15	20	27	39	52

[D] Solve the difference equation: $y_{n+2} - 7y_{n+1} + 10y_n = 4^n + 12e^{3n}$

END OF PAPER