6

2

5

4

2

4

6

2

6

6

6

6

GANPAT UNIVERSITY

B. TECH. SEMESTER III ELECTRONICS & COMMUNICATION ENGINEERING REGULAR EXAMINATION, NOV-DEC 2011

2EC305 NETWORK ANALYSIS

Time: 3 HOURS.

2

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the right indicate full marks. Assume suitable data, if necessary.

SECTION-I

- Derive the general solution for second order equation(Internal excitation) (A) 1 Determine the mesh Currents i_1, i_2 and i_3 in a network of fig.(1)
 - **(B)**
 - In the Fig.(2) Obtain the voltage output across R_L (\mathbf{C})

- In the network of fig. (3), a steady state is reached with the switch k open. At 6 (A) 1 t=0, the switch k is closed. Find i(t)(particular solution) 4
 - Explain the classification of filter. **(B)**
 - Find the power dissipated in the 100Ω resistor and find the voltage rating of the 2 (\mathbf{C}) dependent Source in fig.(4)
- Explain Constant k-High pass filter with the attenuation band and Characteristic 6 2 (A) Impedance 5
 - Find the loop Currents i_1 , i_2 and i_3 in the network of fig. (5) **(B)**

- Determine the voltage at each node for the circuit shown in Fig.(6) (A) Explain and draw equivalent circuit for Resistor, inductor and capacitor **(B)** In term of the initial & final Condition
 - V-I relationship of R, L and C element **(C)**
- 3 (A) Explain Unilateral and Bilateral element with an example.
 - Explain the tree branch voltage. Find for Given network in fig.(7) **(B)**
 - What is the Source transformation with an example? (\mathbf{C})

SECTION-II

State and prove maximum power transform theorem. (A) 4

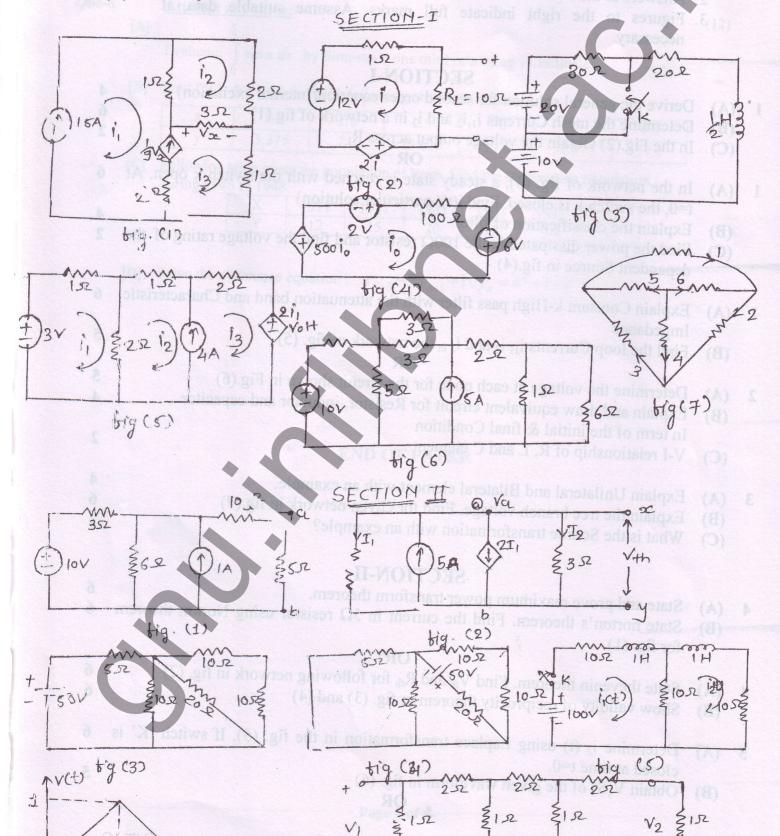
(B) State norton's theorem. Find the current in 5 Ω resistor using Norton theorem for fig. (1)

OR

State theven in theorem. Find V_{th} and R_{th} for following network in fig. (2) (A) Show validity of reciprocity theorem in fig. (3) and (4)

- (A) Determine i_2 (t) using Laplace transformation in the fig. (5), If switch 'K' is 6 5 closed at time t=0. 5
 - Obtain V(S) of the given waveform in fig. (6) **(B)**

OR


- 5 (A) State relation between u(t), r(t) and $\delta(t)$, and prove it.
 - (B) Obtain Y-parameters in terms of Z-parameters.
 - (C) Define inverse H-parameters and give equation of it.
- 6 (A) For the resistive two port network of fig. (7). Determine the numerical values 6 for G_{12} , α_{12} , Z_{12} , Y_{12} .
 - (B) Prove the conditions for the network to be reciprocal and symmetry using Z-parameters.

5

2

2

(C) Define poles and zeros of network function.

