Total Marks: 70

GANPAT UNIVERSITY

B. Tech. Sem. III (EC) **Regular Examination November/December-2012**

2EC302: Electronic Devices & Circuits

Time: 3 Hours

Instructions:

1

2

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data, if necessary.

SECTION-I

- 2 (A) Explain DC load line on collector characteristic of BJT. What are the bias conditions of the base-emitter and base-collector junctions for a 2 **(B)** transistor to operate as an amplifier? 3 Define β_{DC} and α_{DC} . (C) 5
- Explain basic construction and operation of transistor. **(D)**

OR

- If a transistor has α of 0.95, find the value of β . If $\beta = 180$, find the value of α . 1 (A)
 - Explain transistor as an amplifier and derive the equation of voltage gain. **(B)**
 - (C) Determine V_{BE} , V_{CE} , V_{CB} , I_B , I_C and I_E for figure(a). (β =110)
 - Derive equation of R_{IN(base)}, V_{CE} and I_C for voltage divider bias circuit using NPN 6 (A) transistor.
 - Determine how much the Q-point for the circuit in figure(b) will change over a 5 **(B)** temperature range where β_{DC} increases from 75 to 100 and V_{BE} decreases from 0.7V to 0.5V.

OR

- (A) Derive equation of V_{CE} and I_C for Base bias circuit using n-p-n transistor. Also discuss the 6 2 Q-point stability in it.
 - (B) Determine I_B , I_C and V_{CE} in voltage divider biased n-p-n transistor circuit. ($V_{CC}=10V$, $R_1=$ 5 $10K\Omega, R_2 = 5.6K\Omega, R_E = 560\Omega, R_C = 1K\Omega, \beta_{DC} = 120)$
- (A) Draw and Explain common collector amplifier circuit. Draw its AC equivalent circuit and 7 3 Derive its voltage gain, input resistance, output resistance, current gain and power gain.
 - Explain Darlington pair circuit with its advantage and application with suitable example. 5 **(B)**

OR

Draw and explain Class B power amplifier. **(B)**

5

2

5

5

SECTION-II

