Total Mari	ks: 70
X III	
	(12)
False position	
compute y(0.1)	
	(12)
l into four parts.	
correct up to three	
at $x = 0.1$.	

Seat No.

GANPAT UNIVERSITY

B.Tech. (EC) Sem. - III CBCS Regular Theory **Subject: 2HS301 Engineering Mathematics III** November – December 2012

Time: - 3 Hours Instructions:

- 1. All questions are compulsory.
- 2. Write answer of each section in separate answer books.
- 3. Figures to the right indicate marks of questions.

SECTION - I

Que-1 Answer the following.

- [A] Evaluate: $\int_{0}^{\infty} \frac{dx}{1+x^2}$ by Simpson's one third rule.
- [B] Find the real root of $f(x) = xe^x 2$ which lies between 0.8 and 0.9, using method correct up to three decimal places.
- [C] Find the root of $\frac{dy}{dx} = y \frac{2x}{y}$, y(0) = 1, using Taylor series expansion c correct up to four decimal places.

Answer the following. Que-1

- [A] Evaluate: $\int_{1+x^3}^{1+x^3} dx$ by Simpson's one third rule and divide the interval
- [B] Find the root of $x^3 + 2x^2 + 10x 20 = 0$, using Newton Raphson method decimal places, taking initial point $x_0 = 2$.
- [C] Find the root of $\frac{dy}{dx} = x + y^2$, y(0) = 1, using Picard's method. Find y a

Que-2 Answer the following.

[A] State & Prove Cauchy's theorem.

(03)

(04)

- Show that $u = y^3 3x^2y$ is a Harmonic function. Find its Harmonic conjugate. Also find corresponding analytic function.
- Evaluate: $\int_{C} \frac{dz}{z^2 2z}$ where c is the circle |z 2| = 1(04)

OR

Que-2 Answer the following.

[A] Find the Bilinear transformation which maps the points z = 2, i, -2 in to the points (03)w = 1, i, -1

- [B] Prove that Sin hz is an analytic function.
- [C] Evaluate: $\int \frac{e^{2z}}{(z-1)(z-2)} dz$ where c is the circle |z|=3

Que-3 Attempt any three:

(12)

- [A] Find $\left\{ \frac{\Delta^2}{E} \right\} X^3$, when I.d. = 1
- [B] Find f'(1.5) and f''(1.5) for the following data

X	1.5	2.0	2.5	3.0	3.5	4.0
Y	3.375	7.000	13.625	24.000	38.875	59.000

Using the following table find f(1946)

X	1911	1921	1931	1941	1951	1961
Y	12	15	20	27	39	52

Solve the difference equation: $y_{n+2} - y_{n+1} + y_n = 0$

SECTION-I

Answer the following. Que-4

(12)

- [A] Find a Fourier series to represent for $f(x) = x \sin x$, $0 < x < 2\pi$
- [B] Find a Fourier series representation of function $f(x) = \begin{cases} -k, & -\pi < x < 0 \\ k, & 0 < x < \pi \end{cases}$
- [C] Find the half range cosine series for $f(x) = x^2$; $0 < x < \pi$.

Que-4

Answer the following.

(12)

- Find a Fourier series for the function: $f(x) = e^{ax}$; $-\pi \le x \le \pi$
- Find a Fourier series representation of function $f(x) =\begin{cases} -x^2, & -\pi < x < 0 \\ x^2, & 0 < x < \pi \end{cases}$
- Find the half range cosine series for $f(x) = (x-1)^2$; 0 < x < 1.

Que-5

Answer the following.

- [A] Evaluate: (1). $L\{sinh^3 2t\}$ (2). $L\{e^{-t}sin^2 2t\}$

(03)

- [B] Evaluate: (1). $L^{-1}\left\{\frac{S+2}{S^2-4S+13}\right\}$ (2). $L^{-1}\left\{\frac{1}{s(s^2+a^2)}\right\}$

(04)

[C] Use Laplace transform evaluate : $\int_{0}^{\infty} \frac{e^{-t} \sin^{2} t}{t} dt$ (04)

OR

Que-5 Answer the following.

- [A] Find (1). $L\{e^{2t}\sin 2t\cos t\}$ (2). $L\{e^{-3t}\sin (3t+2)\}$
- [B] Find (1). $L^{-1} \left\{ \frac{2s+6}{s^2+4} \right\}$ (2). $L^{-1} \left\{ \log \left(\frac{s+1}{s-1} \right) \right\}$ (04)
- [C] Use Laplace transform solve: $(D^2 + 4)y = \sin t$, Where y(0) = 1 and y'(0) = 0 (04)

Que-6 Attempt any three: (12)

- [A] Express $f(x) = |\sin x|$, $-\pi \le x \le \pi$ as Fourier series.
- [B] State the Convolution theorem and using it evaluate L^{-1} $\left\{\frac{1}{s^2(s^2+a^2)}\right\}$.
- [C] Find the Laplace transform of square wave function given by $f(t) = \begin{cases} -1, & 0 < t < a \\ 1, & a < t < 2a \end{cases}$
- [D] Define Unit step Function and Find $I^{-1} \left\{ \frac{e^{-2s}}{s-3} \right\}$

END OF PAPER