Student Exam No.

GANPAT UNIVERSITY

B. Tech. Semester IIIrd (EC) Electronics and Communication Engineering

Regular Examination November – December 2013

2EC302 - ELECTRONIC DEVICES AND CIRCUITS

Time: 3 Hours

Total Marks: 70

4

3

2

Instruction:

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data, if necessary.

Section - I

- Que. -1 (A) Define h-parameter of a transistor. Draw the equivalent circuit of a transistor with h-parameters. Derive the general expressions for current gain, voltage gain, input impedance, output impedance for a transistor amplifier circuit using h-parameters.
 - (B) Define active, saturation and cutoff regions in a transistor. Sketch 4 family of Common Emitter output characteristics for a transistor.

OR

- Que. -1 (A) Explain Miller's theorem. Also derive expressions for Miller effect 6 input and output capacitances.
 - (B) For the circuit shown in figure. 1, draw the dc load line and plot the β Q point. Sketch the Q point when β changes from 100 to 150 and 100 to 50. Show that Q point is sensitive to variation in β .
- Que. -2 (A) Define stability factors with respect to transistor biasing. State the 4 factors affecting the stability.
 - (B) Write short note on phototransistor.
 - (C) Draw three basic configuration of NPN transistor.

OR

- Que. -2 (A) For the amplifier circuit shown in figure. 2, draw ac equivalent 6 circuit using h-parameter model and r-parameter model. Derive expressions for input impedance, output impedance for given circuit using any one of the small signal model.
 - (B) What is the effect of emitter bypass capacitor on low frequency 5 response of an amplifier? Explain the effect of parasitic capacitance and wiring capacitance on high frequency response of a BJT amplifier.

- Draw and explain Emitter bias circuit. Derive expressions for d.c. 7 voltages and currents in the circuit. Find I_C and V_{CE} for given $R_B = 220 \text{ K}\Omega$, $R_C = R_E = 1 \text{ K}\Omega$, $V_{CC} = 10 \text{ V}$, $\beta = 100$.
- (B) Define: Bandwidth of an amplifier, 3-dB frequency, AC Beta(β_{ac}). 3
- (C) Why biasing is required? Explain in brief.

Section - II

- Que. 4 (A) Describe charge storage phenomenon of normal p-n junction diode 7 and how this phenomenon affects the operation of diode at high frequencies.
 - (B) Determine I, V_1 , V_2 , and V_0 for the series dc configuration of 5 Figure 3.
 - Que. 4 (A) How static, dynamic and average resistance of diode is calculated? 7 Explain in detail.
 - (B) Determine the currents I_1 , I_2 , and I_{D2} for the network of Figure 4. 5
 - Que. 5 (A) Explain basic operation and characteristics of n-channel 6 enhancement type MOSFET with neat and clean diagram.
 - (B) What is the reason of cross-over distortion in class-B push pull 5 power amplifier? Explain solution of it.

OR

- Que. 5 (A) Determine I_{DQ} and V_{DSQ} for the enhancement-type MOSFET of 6 Figure 5.
 - (B) Enlist the differences between Bipolar Junction Transistor and 5 Field Effect Transistor.
- Que. -6 (A) Write a short note on photolithography process of IC fabrication. 4
 - (B) Determine the range of values of V_{in} that will maintain the Zener 4 diode of Figure 6. in the "on" state.
 - (C) Sketch a p-channel enhancement-type MOSFET with the proper 4 biasing applied and indicate the channel, the direction of electron flow, and the resulting depletion region.

