Student Exam No.

Total Marks: 70

GANPAT UNIVERSITY

B. Tech. Semester: III (EC)

Regular Examination November – December 2013

2HS301 - ENGINEERING MATHEMATICS - III - Theory

Time: 3 Hours

Instruction: 1. All questions are compulsory.

- 2. Write answer of each section in separate answer books.
- 3. Figures to the right indicate marks of questions.

SECTION-I

Que1 (A)		pt the foll & Prove C	-	eorem.	ioù h K ×			~)	12
(B)					fun	ction of	z the	en find $f($	z) where	
		$=e^{x}(Cosy$					Agel		itten, m.d	
(C)	Evalu	ate: $\int_{0}^{2+i} (\overline{Z})$	$\right)^2 dz$; alor	ng the rea	l axis	to 2 and t	the vertic	ally to $2 + i$.		
					0	R				
Que1		pt the follo	0							12
(A)				nation wh	ich n	aps the p	oints $z =$	∶1, <i>i</i> , −1 in to	the points	
		0, -i resp								
(P)	If $f(z)$	z) is an ana	lvtic funct	ion of z th	en pr	ove that	$\partial^2 = \partial^2$	$\frac{1}{2}\left \left f\left(z\right)\right ^{2}=4$	$ f'(z) ^2$	
(B)			Sec. An		, pr		$\partial x^2 \partial y$	\bar{z} $ J(2) $	* <i>J</i> (2) ·	
		r e ²	2		6.6036			hafon (m. 63		
(C)	Evalu	ate : $\int_{c} \frac{e^{2z}}{(z+1)}$	$\frac{1}{1} dz$; w	here c is t	he cir	cle $ z = 2$	in annoa			
Que2		pt the follo				> 1,1 Mir				(3)
(A)				Г						11
()	Prove	that $\Delta \log$	$f(x) = \log x$	$g 1 + \frac{\Delta f}{M}$	(x)	the interv	val of dif	ference being	g unity.	3
					and .					
(B)	Inac	ertain expe	riment; th	e values o	ofxa	nd y were	e found a	s under. Find	l the value	4
	or y w	then $x=2.5$.	1000	mn melli	Sizers	a sosias	1 (1) (3)			
	X	0	1	2	3	4	5	6	= (t) T	
()	У	0	1	16	81	256	625	1296	di unili	
(C)	The second second second	he value of				The second s			1+ 1)1	4
	X	5	7	11		13	17			
	у	150	392	1452	0	2366	5202	- Mara w		
Que2	Attem	pt the follo	wing:		U.	ĸ				11
(A)		that Δ^2 (co	-	sin ² heas	12-1	26)				11 3
(B)							ionia inic	to three deal	como	
(1)	popula	tion for the	e vear 197	5	uecei	imai cens	sus were	as under. Es	timate the	4
	Year		1941			0.61		- A the relation	Aboth	
	summer to reach the second second second	lation (y)	46	1951 67		961 33	1971 95	1981	Eveloya	
(C)					etric n	ressure D	95 at height	102 H above the		
	Find P	when H =	5000.		nie p	ressure I	at neight	. 11 above the	sea level.	4
	X	20	30	40	50					
	N	630	525	450	270					

Page 1 of 3

Que.-3 Attempt any three:

(A) Find the Fourier series for the function $f(x) = x + x^2$; $[-\pi, \pi]$

Hence show that
$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{4^2}$$

(B) Obtain Fourier series for the function f(x) given

Find a series of sine of multiples of x which represent f(x) in $(0, \pi)$ where

$$f(x) = \begin{cases} 1 + \frac{2x}{\pi} & ; & -\pi \le x \le 0\\ 1 - \frac{2x}{\pi} & ; & 0 \le x \le \pi \end{cases}$$

(C)

$$T(x) = \begin{cases} \frac{\pi x}{4} & ; \quad 0 \le x \le \frac{\pi}{2} \\ \frac{\pi}{4}(\pi - x) & ; \quad \frac{\pi}{2} \le x \le \pi \end{cases}$$

(D) Obtain the half range cosine series for $f(x) = x^2$; $[-\pi, \pi]$

SECTION-II

- Que.-4 Attempt the following:
 - (A) If $L{f(t)} = \bar{f}(s)$ then prove that $L{t^nf(t)} = (-1)^n \frac{d^n}{ds^n} \bar{f}(s), n = 1, 2, 3, ...$
 - (B) State convolution theorem and use it to evaluate $L^{-1}\left\{\frac{s^2}{(s^2+a^2)^2}\right\}$.
 - (C) Find $L{f(t)}$ where $f(t) = \begin{cases} \sin t, t < \pi \\ t, t \ge \pi \end{cases}$

Que.-4 Attempt the following:

- (A) Solve y'' + 9y = r(t) by Laplace transform method where y(0) = 0, y'(0) = 4, r(t) = 8sint if $0 < t < \pi$ and 0 if $t > \pi$
- (B) Find the Laplace transform of the Saw-tooth wave function $f(t) = \frac{k}{p}t$, if 0 < t < p, $f(t+p) = f(t), \forall t$
- (C) Evaluate (1) $L\left\{\frac{e^{-t}\sin t}{t}\right\}$ (2) $L^{-1}\left\{\log\left(1+\frac{4}{s^2}\right)\right\}$

Que.-5 Attempt the following:

- (A) Find a real root of the equation $x \sin x + \cos x = 0$ using Newton Raphson method 4 correct to three decimal places.
- (B) Using Taylor's series method obtain the solution of $\frac{dy}{dx} x^2 = y^2$ where y(0) = 1. 4 Also find the values of y at x = 0.1.
- (C) Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Simpson's 3/8th rule taking three equal parts. Hence obtain an 3 approximate value of π .

12

11

12

Que.-5 Attempt the following:

- (A) Find positive root of the equation $x^4 x 10 = 0$ by self iteration method up to 4 four decimal places.
- (B) Apply Euler's method to solve $\frac{dy}{dx} = x + y^2$ for x = 0.5 given that y = 1 when 4 (C) Use Simpson's $1/2^{19}$ is a $x + y^2 = 0.5$ given that y = 1 when 4
- (C) Use Simpson's $1/3^{rd}$ rule to find $\int_0^{0.6} e^{-x^2} dx$ by taking seven ordinates.

Que.-6 Attempt any three:

- (A) Evaluate $L^{-1}\left\{\frac{e^{4-3s}}{(s+4)^{5/2}}\right\}$
- (B) Solve y''' + 2y'' y' 2y = 0 by Laplace transform method where y(0) = 1, y'(0) = 2, y''(0) = 2(C) Solve the following system of counting 1 = 0
- (C) Solve the following system of equation by Gauss Seidal method 30x - 2y + 3z = 75, x + 17y - 2z = 48, 2x + 2y + 18z = 30 correct up to four decimal places.
 (D) Find the first and second ordered 1 is in the first and second ordered 1.
- (D) Find the first and second ordered derivatives of the function tabulated below, at the point x = 2.2

X	1.2	1.4	16	10			
y = f(x)	3.32	4.055	4.05	1.0	4	2.2	
<u> </u>	0.02	14.033	4.95	6.055	7.39	9 0 2 5	-

END OF PAPER

3

12