GANPAT UNIVERSITY B. Tech. Sem. III (EC) CBCS

Regular Examination Nov/Dec 2014 2EC304: Digital Electronics

Time: 3 Hours]

[Total Marks: 70

4

4

6

6

6

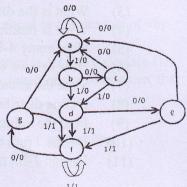
6

			31 G 1324		
Ins	tri	10	tin	n	C.

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data, if necessary.

SECTION-I

- 1 (A) Write a short note on switching time with reference to logic gate.
 - (B) Draw and explain the circuit diagram of DTL basic NAND gate.
 - (C) Draw the circuit diagram of three different types of output configuration of TTL gates.


OR

- 1 (A) Reduce the following expressions using identities. (A+C+D)(A+C+D')(A+C'+D)(A+B')
 - (B) Implement the following.

 1. Basic gates using NAND gate
 - 2.Basic gates using NOR gate(C) Given the following Boolean function:
 - F = xy'z + x'y'z + w'xy + wx'y + wxy(a) Draw the logic diagram using the original Boolean expression.
 - (b) Simplify the function to a minimum number of literals using Boolean algebra.
- 2 (A) Simplify the Boolean function $F(A,B,C,D) = \sum m(0,1,2,8,10,11,14,15)$ using tabulation method.
 - (B) Design a synchronous BCD counter using T flip flop.

UK

- 2 (A) Draw and explain the block diagram of 4-bit universal shift register.
 - (B) Reduce the following state diagram, mention all steps clearly and draw the reduced state diagram.

3 Do as directed.

- (1) Convert 34.5678 to octal.
- (2) Convert 9123.321 to binary.
- (3) Obtain 10's complement of 3876809.
- (4) Obtain 2's complement of 11001100.
- (5) Subtract M=1010101 from N=1001000.
- (6) Convert 2358.897 into BCD.

and the contract	(7)	Convert 1010101 to Gray code.	
	(8)	Convert (11001100)g to Binary code.	1
	(9)	Convert (110.111101011) ₂ in to Octal.	1
	(10)	Convert (110.111101011) ₂ in to Hexadecimal.	1
	(11)	What is ASCII Code? Explain in brief.	1
	i decision		
		SECTION-II	
4	(A)	Draw and explain the JK flip flop using NAND implementation.	4
	(B)	Write a short note on triggering of flip flops.	4
	(C)	Draw the excitation tables of all flip flops.	4
	(0)	OR OR	
4	(A)	Realize XOR and XNOR gates using (a) Only NAND gates (b) Only NOR gates.	4
•	(B)	Simplify using K-map F (P, Q, R, S) = π M (0, 1, 2, 3, 6, 7, 13, 15). Implement the	4
	(D)	reduced function using NOR gate only.	
	(C)	Demonstrates by means of truth tables the validity of the following theorems of Boolean	4
	(0)	algebra.	
		(a) The Associative laws.	
		(b) De Morgan's Theorems for three variables.	
		(c) The distributive law of + over *.	
5	(A)	Design a Counter that follows pattern 0,2,3,6,7 and Repeat use JK F/F.	4
	(B)	Design a combinational circuit that accepts a three bit number and generates an output	4
		binary number equal to the square of the input number.	
	(C)	Draw and explain a 3 to 8 line decoder.	4
	` ′	OR	
5	(A)	Simplify the Boolean function using K-MAP, $F(A,B,C,D) = \sum m (2,4,6,8,10) + \sum d$	4
	211707	(0,1,3). Draw the logic diagram from the derived Boolean equation.	
	(B)	Design 8 x 1 Multiplexer using two 4 x 1 Multiplexer	4
	(C)	Design a Counter that follows pattern 0,2,3,6,7 and Repeat use T F/F.	4
6	Do as	directed.	
	(1)	How can we convert Ex-OR gate into a NOT gate. Draw the logic symbol.	1
	(2)	List out the advantages of Master Slave FF compare to normal FF?	1
	(3)	What is the difference between combinational logic circuit and sequential logic circuit?	1
	(4)	What is multiplexer?	1
	(5)	How many 4-bit binary parallel adders are required for 4- bit BCD adder?	
	(6)	How can we convert SR FF into D FF?	1
	(7)	State the advantages of complex MSI devices over SSI gates.	1
	(8)	Define distributive law.	1
	(9)	Find the value of $X = A B C (A+D)$ if $A=B=C=D=1$.	1
	(10)	Define Truth table.	1
	(11)	Design 1 bit magnitude comparator	1