Seat	No	
seal	INO.	

Ganpat University

B. Tech Semester – III (EC)Regular Examination Nov – Dec 2014 Subject : (2HS301) Engineering Mathematics - III

Time: 3 hrs. Marks: 70

- 1. All questions are compulsory.
- 2. Write answer of each section in separate answer books.
- 3. Figures to the right indicate marks of questions.

Section - I

Que: 1

(A) If
$$L\{f(t)\} = \overline{f}(s)$$
 then Prove that $L\{t^n f(t)\} = (-1)^n \frac{d^n}{ds^n} \{\overline{f}(s)\}$ [4]

(B) Find: (1)
$$L\{e^{-t}\cos 5t\cos t\}$$
 (2) $L\{te^{-t}\sinh t\}$ [4]

(C) State Convolution theorem and apply it to evaluate
$$L^{-1}\left\{\frac{1}{(s^2+a^2)^2}\right\}$$
 [4]

OR

Que: 1

(A) Evaluate: (1) L
$$\left\{ \frac{1 - e^{2t}}{t} \right\}$$
 (2) L⁻¹ $\left\{ \frac{3s - 2}{s^2 - 4s + 20} \right\}$ [4]

(B) Find
$$L^{-1}\left\{\log\left(\frac{s-4}{s+7}\right)\right\}$$
 [4]

(C) Solve :
$$\frac{dy}{dt} - 4y = 2e^{2t} + e^{4t}$$
; where $y(0) = 0$. [4]

Que: 2

(A) Find a Fourier series for the function
$$f(x) = x - x^2$$
; $[-\pi, \pi]$ [4] Hence show that
$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$$

(B) Find the fourier expansion of
$$f(x) = 1 + \sin x$$
; $-1 \le x \le 1$ [4]

(C) Find a Fourier series for the
$$f^{ns}$$
 $f(x) = e^{-x}$; $0 < x < 2\pi$ [3]

OR

Que: 2

(A) Expand
$$f(x) = \sqrt{1 - \cos 2x}$$
 as a Fourier series for $[0, 2\pi]$ [4]

(B) Obtain a Fourier series for the
$$f^{ns} f(x)$$
 defined as [4]

$$f(x) = \begin{cases} 1 + \frac{2x}{\pi} & ; -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi} & ; 0 \le x \le \pi \end{cases}$$

(C) Obtain Half range Cosine series for $f(x) = \pi - x$; [0, π]

[3]

Que: 3 Attempt any Three

(A) If $\emptyset = x^3 + y^3 + z^3 - 3xyz$ Then Prove that : $r \cdot \nabla \emptyset = 0$

[4]

- (B) Find the Directional derivative of $f(x,y,z) = x^2 yz + 4x z^2$ at (1,-2,-1) in the direction of the vector 2I J 2K.
- (C) Show that $\overline{F} = (2xy e^z) i + (x^2 e^z) j + (x^2 y e^z) k$ is ir rotational also find a corresponding scalar point function \overline{F} s.t. $\overline{F} = \nabla \emptyset$.
- (D) Prove that : div. (grad. r^n) = $n(n+1) r^{n-2}$. [4]

Section - II

Que: 4

(A) Check the analyticity of (i) $f(z) = |z|^2$ (ii) $f(z) = z^3$ [4]

(B) If $w = T_1(z) = \frac{z-2}{z+3}$ & $w = T_2(z) = \frac{z}{z+2}$ then find fixed points for T_1 and T_2 . [4]

(C) State and prove Cauchy's theorem for contour integration. [4]

OR

Que: 4

(A) Evaluate
$$\oint_C \frac{e^{3z}}{(z-1)(z-2)} dz$$
 where $C: |z| = 3$ [4]

- (B) Find $\int_{C} |z|^2 dz$ along the sides of squares with vertices (0,0),(1,0),(1,1) & (0,1) [4]
- (C) Determine the analytic function whose real part is $e^x \cos y$. [4]

Que: 5

(A) Apply Newton's forward formula for finding y at x = 82 for given data

[4]

X	80	85	90	95	100
y = f(x)	5026	5674	6361	7088	7854

(B) Use Lagrange's formula for finding cubic polynomial for given data.

图[3]

X	-1	0	1	3
y = f(x)	2	1	0	-1

(C) Find first and second order derivative at x = 1.2 for following data.

[4]

X	1.0	1.2	1.4	1.6	1.8	2.0
y = f(x)	_ 0	0.128	0.544	1.296	2.432	4.00

Que: 5

	$\Lambda^2(v^3)$	
(A)	Evaluate with $h = 1$ (i) $\Delta (\log f(x))$ (ii) $\frac{\Delta^2(x^3)}{E(x^3)}$	[5]
	Solve the following defference equations.	[6]
4114 - 114 - 114	(1) $u_{n+2} - 2u_{n+1} + 6u_n = 4$ (2) $u_{n+2} - 2u_{n+1} + u_n = n \cdot 2^n$	

Que: 6 Attempt any Three

(A)	Using Bisection method find real root of $x^3 - 3x - 5 = 0$ in (2,3) upto fifth	[4]
	approximation	

	용발사 발생 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 		7
(B)	Use Euler's method to solve $y' = x +$	y^2 , where $y(0) = 1$ find $y(0.5)$ with $h = 0.1$ [4	.]

(C) Evaluate
$$\sqrt{38}$$
 correct upto three decimal places using N – R Method. [4]

(D)	Solve: $2x + y + z = 10$, $3x + 2y + 3z = 18$, $x + 4y + 9z = 16$ by Gauss	[4]
	alimination method	

End of Paper