GANPAT UNIVERSITY

B. TECH. SEMESTER III (ELECTRONICS & COMMUNICATION ENGINEERING) CBCS REGULAR EXAMINATION, NOVEMBER 2014

2EC305 NETWORK ANALYSIS

		Max. Time: 3 Hrs.] [Max. Marks: 70 structions:	
	In		
		1. Attempt all questions. 2. Answers to the two sections must be written in concepts on some health.	
		 Answers to the two sections must be written in separate answer books. Figures to the right indicate full marks. 	
		4. Assume suitable data, if necessary.	
		SECTION-I	
Q-1	(A)	Discuss about source transformation and which type of techniques using we can simplify	6
	(**)	network.	U
	(B)	Find the currents through the resistor shown in the network of fig 1.1using mesh analysis.	6
		OR	
Q-1	(A)	Differentiate the following term (1) lumped and distributed network (2) circuit and network (3)	6
		mesh and loop.	
	(B)	What is duality? And write down the procedure to construct the dual network of fig. 1.2.	6
Q-2	(A)	Find the current and voltage drop through 5Ω resistor network shown in fig. 1.3.	6
	(B)	What is importance of initial condition in network analysis? And Define time constant.	5
		OR	
Q-2	(A)	In the network of fig 1.4 the switch K is in position a for a long of time. At t=0, the switch is	6
		moved from a to b. Find $V_2(t)$.	
	(B)	Find solution of first order non-homogeneous differential equation using integrating factor and	5
		significance of that.	
02	(4)	Diggues tree violes as and out act in the second	,
Q-3	(A)	Discuss tree voltage and cut set in tree with an example.	6
	(B)	In the network of fig 1.5 the switch K is closed at t=0.obtain the general solution and the particular solution for current i(t).	6
		particular solution for current http.	
		SECTION-II	
ΩA	(4)	Use the venin's theorem to find power at terminal AB of fig.2.1	6
Q-4	(A)		6
	(B)	Determine maximum amount of power that could dissipate in R_1 in network shown in fig.2.2.	6
0.4	(4)	OR	,
Q-4	(A)	Apply the superposition theorem to find current in $3+4j\Omega$ impedance in networks of fig.2.3.	6
	(B)	Find the Norton's equivalent network across terminal AB of network shown in fig.2.4.	6
0 =	() \		,
Q-5	(A)	Find the y parameter for the resistive network of fig. 2.5.	6
	(B)	What are the reciprocal condition and symmetrical condition for hybrid parameter?	5
		OR	
Q-5	(A)	Find transmission parameter of the two network of fig.2.6.	6
	(B)	What is the relationship between y parameter to T parameters?	5
Q-6	(A)	Find the Laplace transform of square shown in fig 2.7	6
	(B)	Discuss different the Properties of Filter and write down use of filter.	6

