Dute: 26/11/2015.

Exam	No.	
------	-----	--

GANPAT UNIVERSITY

B. TECH. SEM-III (EC) REGULAR EXAMINATION, NOV-DEC 2015 2EC301: ELECTRONIC DEVICES AND CIRCUITS

TIME: 3 HRS

TOTAL MARKS: 60

5

5

5

5

4

3

3

4

3

3

5

5

INSTRUCTION:-

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data, if necessary.

SECTION-I

- Q.1 (A) Explain CB, CE and CC configuration for BJT. (Circuit diagram, input and output characteristics)
 - (B) For the voltage-divider bias configuration of Fig. 1, determine: (a) I_{BO}.(b) I_{CO}.(c) V_{CEO}.(d) V_C.(e) V_E.(f) V_B

OR

- Q.1 (A) Explain concept of load line and Q-point for voltage divider bias transistor circuit. Explain the importance of Q-point location with respect to stability and region of operation.
 - (B) Given that $I_{CQ}=2$ mA and $V_{CEQ}=10$ V, determine R_1 and R_C for the network of Fig.2.
- Q.2 (A) For the BJT Amplifier, determine cutoff frequencies (fLs, fLc, FLE).
 - (B) Explain Darlington connection. List its advantages.
 - (C) Define: 1. I_{CBO} 2. β 3. Critical Frequency

OR

- Q.2 (A) For the network of loaded BJT amplifier, draw high frequency ac equivalent model and define fHi, fHo.
 - (B) For the collector feedback configuration of Fig. 3, determine: (a) I_B . (b) I_C . (c) V_C .
 - (C) Explain use of bode plot for amplifier circuit with suitable example.
- Q.3 (A) Explain PNP and NPN transistor in detail with necessary figures.
 - (B) Explain miller effect capacitance with suitable example. Derive formulas for CMi & CMo.

Fig.1

Fig.2

Fig.3

SECTION-II

			4
4-	(A)	Define following term: (i) Extrinsic semiconductor	
	(D)	(ii) Reverse recovery time in PN diode Explain half wave rectifier and centre tap full wave rectifier.	6
	(B)	OR	
4.	(A)	Explain Voltage - Ampere (V-I) characteristic of Diode.	5
	(B)	Explain positive and negative clampers.	5
5	(A)	Give the comparison of BJTs and FETs	3
3	(B)	Draw and explain output characteristics curve of JFET.	5
	(2)	Draw output characteristic and transfer characteristic of n-channel D-MOSFET.	2
		OR	= 4
5	(A)	Draw the construction and symbol of following FETs.	5
		(i) n-channel and p-channel FET	
		(ii) n-channel and p-channel E-MOSFET	5
	(B)	Draw and explain the output characteristics and transfer characteristics of it characteristics	3
		MOSFET.	
((4)	Draw self-bias configuration of the n-channel JFET.	2
0	(A) (B)	Explain Class A power amplifier.	4
	(D)	Explain Class 71 power amprication of the Explain Zener Diode in brief	4

END OF PAPER