Exam No.	
Exam No.	

GANPAT UNIVERSITY

B.TECH.SEMESTER-III(EC) CBCS(NEW) REGULAR EXAMINATION NOV-2015

2HS302: Mathematics for Electronics & Communication Engineering

TIME: 03 HRS

TOTAL MARKS: 60

Instruction:

- 1. This question paper has two sections. Attempt each section in separate answer book
- 2. Figures on right indiacte marks.
- 3. Be precise and to the point in answering the descriptive question.

SECTION - I

Que-1

(A) Find laplace transform of (i)
$$5t^2 + e^{2t} + t^2$$
 (ii) $e^{4t} \cos 3t$ (4)

(B) Find the laplace inverse of
$$\frac{3s}{(s+1)(s-3)}$$
 (3)

(C) Use laplace transform solve
$$y'' - y' - 2y = 20sint$$
; $y(0) = 1$, $y'(0) = 0$ (3)

OR

Que - 1

- (A) Express following function in terms of unit step function and find its laplace transform $f(t) = \begin{cases} t-1 \ ; \ 1 < t < 2 \\ 3-t \ ; \ 2 < t < 3 \end{cases}$ (4)
- (B) Using convolution theorem find $L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\}$ (3)
- (C) Evaluate the given integral by laplace transform $\int_{0}^{\infty} e^{-2t} \cos 4t \, dt \qquad (3)$

Que - 2

(A) Find
$$\int_{0}^{2+i} (x^2 - iy) dz \text{ along the path } x = t, y = t^2.$$
 (4)

- (B) Prove that coshz is an analytic function and find its derivative. (3)
- (C) Find an analytic function whose imaginary part is $e^x \sin y$. (3)

Que - 2

- (A) Find bilinear transformation which maps points z = 1, i, -1 onto the points $w = 0, 1, \infty$ (4)
- (B) Show that s nxcoshy is harmonic and find its harmonic conjugate. (3)
- (C) Evaluate $\oint_C \frac{z^2 + 2e^z}{(z+1)(z-2)} dz \text{ where } C: |z| = 3$ (3)

Que - 3

- (A) Find (i) $L\left\{\frac{1-\cos t}{t}\right\}$ (ii) $L^{-1}\left\{\log\left(\frac{s+3}{s-3}\right)\right\}$ (5)
- (B) Show that polar function $f(r, \theta) = z^7$ is an analytic function. (5)
- (S) State and prove Cauchy's theorem for contour integration. (5)

SECTION - II

(4)

(3)

Que - 4

(A) Find the value of sin(52) for given data.

 x 45
 50
 55
 60
 65

 y = sinx 0.7071
 0.7660
 0.8192
 0.8660
 0.9063

(B) In usual notation prove the following results.

(i) $\Delta \nabla = \nabla \Delta = \Delta - \nabla$ (ii) $\Delta + \nabla = \frac{\Delta}{\nabla} - \frac{\nabla}{\Delta}$

(C) Obtain value of y at x = 2 for following data.

х	-1	0	2	3
y = f(x)	8	3	1	12

OR

Que - 4

- (A) Solve: $y_{n+2} 4y_n = 9n^2$
- (B) Evaluate: (i) $\Delta^2 e^{2x}$ (ii) $\Delta \log f(x)$ (3)
- (C) Solve the following difference equation. (3)

(i)
$$u_{n+2} - 3u_{n+1} + 4u_n = 0$$
 (ii) $u_{n+2} - 4u_{n+1} + 4u_n = 0$

Que - 5

(A) Use Euler's method to find
$$y(1)$$
 for $y' = x + y$; $y(0) = 1$

(B) Find first order derivative for
$$x = 0.2$$
 for given data.

(4) (3)

(3)

(5)

x	1	0.2	0.4	0.6	0.8		7
y = f(x)	0	0.12	0.48	1.10	2.0	3.2	

(C) Solve following equations by Jacobi method.
$$5x + 2y + z = 12, x + 4y + 2z = 15, x + 2y + 5z = 20 \text{ upto 4th step.}$$

OR.

Que - 5

- (A) Find the real root of the equation $x^3 x 2 = 0$ correct upto four decimal places using newton raphson method. (4)
- (B) Find the real root by using bisection method for $x^2 4x 10 = 0$ upto fourth approximation. (3)
- (C) Apply Gauss Jordan method to solve following equations. x + 4y z = -5, x + y 6z = -12, 3x y z = 4 (3)

Que - 6 Attempt any two

(A) Obtain f(1) and f(6) using divide difference formula.

x	-4	-1	0	2	5
y	1245	33	5	0	1225
				9	1335

(B) Use Runge – Kutta method for finding an approximate value of y at x = 0.1 given that $y' = x - y^2$; y = 1 when x = 0.

(C) Evaluate
$$\int_{0}^{1} e^{x} dx$$
 with $h = 0.2$ by using all three rules. (5)

END OF PAPER