GANPAT UNIVERSITY

B. TECH. SEMESTER III ELECTRONICS & COMMUNICATION ENGINEERING CBCS NEW REGULAR EXAMINATION, NOV- DEC 2015

2EC303 NETWORK ANALYSIS

Time: 3 HOURS. Instructions:

TOTAL Marks: 60

- 1. Attempt all questions.
 - 2. Answers to the two sections must be written in separate answer books.
 - 3. Figures to the right indicate full marks. Assume suitable data, if necessary.

SECTION-I

(A) State and prove maximum power transfer theorem for DC circuits. 0.1 5 Use Superposition theorem to find the value of 'V' across 20Ω resistor in the network 5 of figure 1. OR 0.1 State and prove Norton theorem with necessary example. 5 (B) State reciprocity theorem and by applying the reciprocity find the current through 1Ω 5 Resistor in the shown figure 2 Q.2 (A) Obtain Y parameter in terms of Z-Parameters 5 Describe about Attenuators. Design a II type attenuator to give 20 dB attenuation and 5 to have a characteristic impedance of 100 Ω . Describe about Attenuators. Design a T type attenuator to give 20 dB attenuation and Q.2 5 to have a characteristic impedance of 100 Ω . What do you mean by Equalizer circuits? In detail explain about series equalizer 5 circuit. 0.3 (A) List out various two port parameters for circuit analysis purpose. Discuss the concept 5 of ABCD parameters for 2 stage two port cascaded circuit. What is filter? Discuss about classification of filters in detail. 5

SECTION-II

Q.4	(A)	Find the currents through the all resistors shown in figure 3 using mesh analysis.	
Q.4		Explain the link Current and the tie-set schedule table & equation with an example.	5
	(B)	OR	
0.1	(A)	Use nodal analysis to determine the current I in the network shown figure 4	5
Q.4	(A) (B)	Discuss about the source transformation and different network simplification techniques.	5
Q.5	(A)	Explain and obtain Laplace transform of unit step function and shifted unit step function	5
	(B)	Obtain f(S) of the given triangular waveform f(t) in figure 5.	5
		OR	
Q.5	(A)	Find the Solution of a non-homogeneous Equation Using Integrating factor	5
Q.C	(B)	In the network of the figure 6, the switch k is opened at t=0. Find the values of V, $\frac{dv}{dt}$	5
		$\frac{d^2v}{dt^2}$ at t=0+. if I=10A,R=10\Omega L=1H.	
Q.6	(A)		5
		necessary circuit diagram. Derive the general solution for second order equation using Internal excitation	5
	(D)	Light the general sulliful for scould order equation	

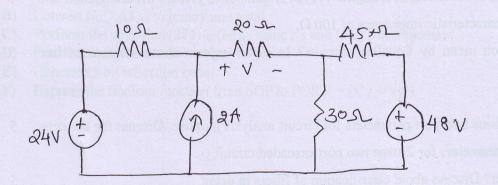
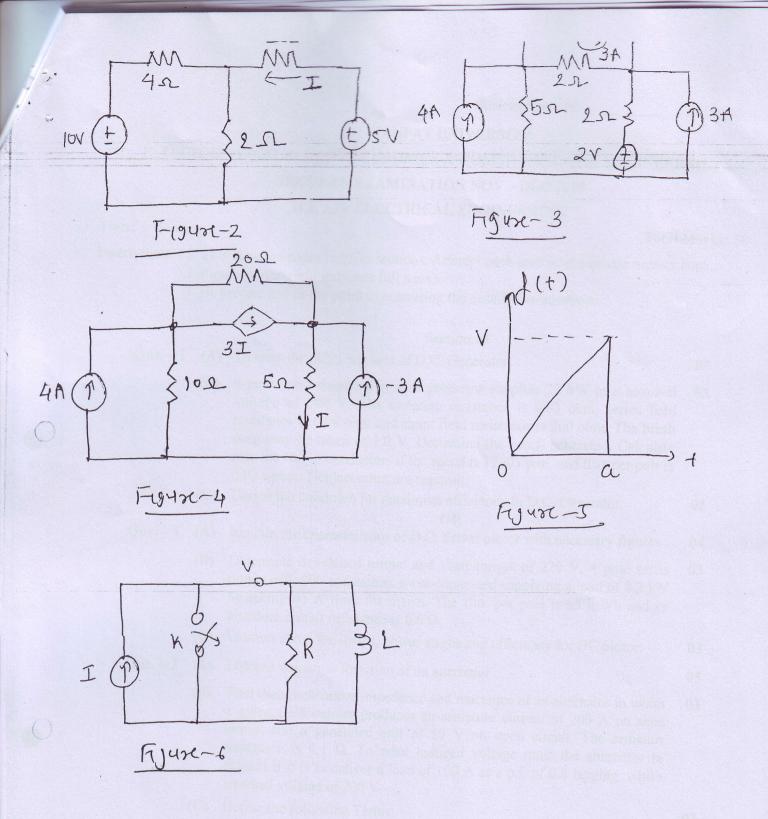



Figure-1

End of paper