Exam No:

GANPAT UNIVERSITY B. TECH SEM- III (EC) CBCS(New) REGULAR EXAMINATION- NOV-DEC 2016 (2HS302) Mathematics for Electronics and Communication Engineering

TIME: 3 HRS

TOTAL MARKS: 60

4

3

3

4

3

3

4

3

3

4

Instructions: (1) This Question paper has two sections. Attempt each section in separate answer book.

- (2) Figures on right indicate marks.
- (3) Be precise and to the point in answering the descriptive questions.

SECTION: I

Q.1 Answer the following

- (a) Using convolution theorem evaluate $L^{-1}\left(\frac{1}{(s+1)(s^2+1)}\right)$
- (b) Evaluate $L^{-1}\left\{ log\left(\frac{s^2+1}{(s-1)^2}\right) \right\}$
- (c) Evaluate $L\{te^{2t}\cos 3t\}$

OR

Q.1 Answer the following

- (a) Using Laplace transform solve 4y'' 4y' + 37y = 0, y(0) = 3, y'(0) = 1.5
- (b) Find Laplace transform of the saw tooth wave function defined by $f(t) = \frac{k}{n}t$, 0 < t < p,

$$f(t+p) = f(t) \ \forall t$$

(c) Find Laplace transform of $f(t) = \begin{cases} e^t, 0 \le t < 5\\ 3, t \ge 5 \end{cases}$

Q.2 Answer the following

(a) Determine the analytic function whose real part is $e^{2x}(xcos2y - ysin2y)$

(b) Evaluate
$$\int_0^{1+i} (x^2 + iy) dz$$
 along the path $y = x^2$

(c) Evaluate
$$\int_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$$
 where $C: |z| = 3$

OR

Q.2 Answer the following

(a) Find a bilinear transformation which maps the points z = 1, i, -1 onto the points w = i, 0, -i

- Check whether the function $w = z^{\frac{5}{2}}$ is analytic or not? (b)
- Evaluate $\int_C \frac{e^z}{(z+1)^2} dz$ where C: |z| = 2(c)

Q.3

- Evaluate $L^{-1}\left(\frac{1}{s^4-2s^3}\right)$ (a)
- Attempt any two (b)
- Evaluate $L\left(\frac{1-e^t}{t}\right)$ I
- Evaluate $\oint_C \frac{\cos \pi z^2}{(z-1)(z-2)} dz$ where C is the circle |z| = 3II
- Evaluate $\int_C \frac{z^2 z + 1}{z 1} dz$ where C is the circle $|z| = \frac{1}{2}$ III

SECTION: II

3

3

4

6

3

3

3

Q.4 Answer the following

- By Picard method solve numerically $\frac{dy}{dx} = 2x y$, y = 0.9 when = 0, at x = 0.2 up to three iteration. (a) 4 Find cube root of 11 up to four decimal places by Newton's Raphson method. (b) 3 Evaluate $\int_0^6 \frac{dx}{1+x^2}$ with h=1 using Trapezoidal rule. (c)
 - OR

Answer the following 0.4

- Apply R-K 4th order method to find an approximation value of y when x = 0.2 given that $\frac{dy}{dx} = x + y$ (a) 4 and y(0) = 1, h = 0.2.
- Find root of equation $2x \log_{10} x = 7$ which lies between 3.5 and 4 by Regula falsi method up to (b) three decimal places.
- 20x + y 2z = 17, (c)Use Jecobi's method to solve 3x + 20y - z = -182x - 3y + 20z = 25

Q.5 Answer the following

(a) Find value of y when x = 90 from the following observation table

	x	100	150	200	250.	300	350	400	
	y	10.63	13.03	15.04	16.81	18.42	19.90	21.27	
Fir	nd a cub	oic polyno	omial whi	ch takes th	e followir	ng values.	Hence ev	aluate $f(4)$.	
	2	r	0		1		2		3
	<i>f</i> (<i>x</i>)	1	Service 19	2		1		10
Co	mpute j	f (10) usi	ing Lagra	nge's inter	polation f	ormula fro	om follow	ring data.	
	2	٢	5		6	211024	9		11
	f(<i>x</i>)	12		13		14		16

OR

Q.5 Answer the following

- (a) Prove that $(i)E = e^{hD} (ii)E\nabla = \Delta$
- (b) Using Newton's divided difference formula find a polynomial of degree which fit into the data below. 3

x	-1	0	1	3	
у	2	1	0	-1	

(c) Using Newton forward interpolation formula find y at x = 4 from the following table

X	0	5	10	15	20	25
y y	7	11	14	18	24	32

Q.6

(a) From following tabulated values of x and y find $\frac{d^2y}{dx^2}$ for x = 1.25

x	1	1.05	1.10	1.15	1.20	1.25	1.3
у	1	1.0247	1.04881	1.07238	1.09544	1.11803	1.14017

(b) Attempt any two

I Evaluate $\int_{4}^{5.2} \log_e x \, dx$ with h = 0.2 using Simpson's 1/3 rule.

- II For given y_{35.0}=1175, y_{35.5}=1280, y_{39.5}=2180, y_{40.5}=2420, find y₄₀ by Newton's divided difference formula.
- **III** Prove that $\frac{\Delta}{\nabla} \frac{\nabla}{\Delta} = \Delta + \nabla$

END OF PAPER

4

3

3

4

3

4

6