Exam No.

Total Marks: 60

[5]

[5]

GANPAT UNIVERSITY

B. Tech. Semester III Electronics and Communication Engineering Regular / Remedial Examination Nov – Dec 2016 2EC303 Network Analysis

Time: 3 Hours

Instructions:

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data, if necessary.

SECTION: I

(B) Determine the voltage across 6Ω resister in the network of above Fig. 1.2 using nodal analysis. [5]

OR

Que:1 (A) The network of Fig. 1.3 contains two voltage sources V_1 and V_2 . With $V_1 = 30 \angle 0^\circ V$. [5] Determine V2 such that the current in the $(2+j3) \Omega$ impedance is zero.

Fig. 1.4

- (B) In the network of above Fig. 1.4, determine the voltage of nodes 1 and 2 with respect to the [5] selected reference.
- Que:2 (A) For the network shown in below Fig. 1.5 determine the numerical value of the branch current [5] i₁. All sources in the network are time invariant.
 - (B) Find dual of network shown in above Fig.1.6.

OR

Que:2 (A) The waveform is shown in below Fig. 1.7 is non-recurring. Write an equation for the [5] waveform V (t). Also obtain the Laplace transform V(s).

(B) Find dual of network shown in above Fig. 1.8.

Que:3 (A) In the network shown in below Fig. 1.9 assuming all initial condition as zero, find $i_{1}, i_{2}, \frac{di_{1}}{dt}$ [5] $\frac{di_{2}}{dt}, \frac{d^{2}i_{1}}{dt^{2}}$ and $\frac{d^{2}i_{2}}{dt^{2}}$ at t=0⁺.

Fig. 1.9

[3]

[2]

- (B) Show the status of R,L and C at t=0+ and $t=\infty$ time.
- (C) Define Bilateral and Unilateral.

Exam No.

SECTION-II

Fig. 2.2

[5]

(B) Determine the current i through 100V source in the network of above Fig. 2.2 using the super [5] position theorem.

OR

Que:4 (A) Draw the thevenin's equivalent of the circuit shown in below Fig. 2.3 and find the current [5] through load resistance (between terminals a-b).

- (B) In the circuit shown in above Fig. 2.4, determine Z_L , so that the power absorbed by it is [5] maximum and the value of the power absorbed.
- Que:5 (A) What is the relationship of Transmission-parameter with Z and H parameter? [5]
 - (B) The network of below Fig. 2.5 contains a current controlled source. For this network, find [5] impedance and Admittance parameter.

- Que:5 (A) Find the transmission parameters of the two port network of above Fig. 2.6. [5]
 - (B) Explain Y Parameter.
- Que:6 (A) Design a high pass filter having a cut-off frequency of 1KHz with load resistance of 600 Ω . [5]
 - (B) Design a T-pad attenuator to give an attenuator of 60dB and to work in a line of 500 Ω [5] Impedance.

END OF PAPER

Page 3 of 3