Seat no.

GANPAT UNIVERSITY

B. Tech. Semester IV Electronics & Communication Engineering **Examination May-June 2012**

2EC405 Digital Design using HDL

[Max. Marks: 35

3

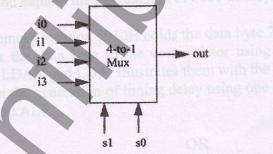
3

Max. Time: 2 Hrs.]

Instructions:

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data, if necessary.

SECTION-I


- 1 (A) Draw and explain typical design flow for designing VLSI IC circuit.
 - Which are two possible styles of stimulus application? Explain each one with 3 **(B)** the help of suitable example.
 - (C) Explain 'define, 'include and 'timescale compiler directive with help of 3 example. 3

d. \$readmemb

e. \$fopen

f. \$random

- Explain the following system tasks. (A) 2
 - a. \$stop
 - b. \$fmonitor c. \$strobe
- Write a Verilog code for 4-to-1 multiplexer using gate primitive. **(B)**

What are the basic components of a module? Which components are 3 **(C)** mandatory?

- (A) Write a Verilog code for following digital circuits using continuous 3 2 assignments.
 - a. 4 bit Binary to gray code converter
 - b. 4 bit Odd parity checker
 - (B) What would be the output/effect of the following statements?
 - a. latch = 4'd12;
 - \$display("The current value of latch = %b\n", latch);
 - b. in reg = 3'd2;
 - \$monitor(\$time, " In register value = %b\n", in reg[2:0]); c. 'define MEM SIZE 1024
 - \$display("The maximum memory size is %h", 'MEM_SIZE);
 - (C) Explain various types of gate delays with suitable example?

3

3

SECTION-II

3	(A) (B)	Write a Verilog code for 4-bit ripple carry full adder by using 1-bit full adder. Compare and contrast. a. initial block and always block.	33
	(C)	b. continuous assignments and procedural assignments Evaluate output Y if A=4'b1100, B=4'b1011, C=4'b101x, D=4'b1001 1. $Y=D+C$ 3. $Y=D >>> 1$	2
		2. $Y = ^B$ 4. $Y = \{2\{A\}, 3\{B\}, C[0], A[1]\}$	
4	(A) (B) (C)	Explain event based timing control in brief with the help of suitable example. Write a Verilog code for 8:3 encoder using casex statement. What are the differences between Task and Functions?	3 3 3
		OR COR	
4	(A)	Write a Verilog code for 5 bit up-down counter and check its functionality with stimulus module.	3
	(B)	Explain different types of delay models. Explain following terms with examples.	3
	(C)	 a. assign and de-assign b. Conditional compilation and conditional execution 	5

End of Paper

(C) Explain various types of gate delays with suitable example? page 2 0 2

DOCT