GANPAT UNIVERSITY

B. Tech. Sem. IV (EC) **Regular Examination May-June 2013**

2EC401: Signals and Systems

Time: 3 Hours

Total Marks: 70

6

Instructions:

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data, if necessary.

SECTION-I

- (A) Find the odd and even component of the given signal 1 1 (i) $x(t) = e^{-2t} \cos t$ (ii) x(t) = tu(t)
 - (B) Determine whether signal is periodic, if it is, then find its fundamental period 6 of the following signal. (i) $x(n) = \cos(\frac{\pi}{2}n^2)$ (ii) $x(t) = 2e^{j(t+\frac{\pi}{4})}u(t)$

- 1 (A) Determine the values of $P_x \& E_x$ for the following signal. $x(t) = A\sin(\omega_0 t + \emptyset)$ 4
 - (B) Define Stable system. Determine whether the given system y(t)=tx(t) is stable 4 or not?
 - (C) Draw the following Signals. (i) u(t) 2u(t-1) + u(t-2) (ii) $x(t) = \delta(\cos t)$ 4
- (A) Define the unit step function and unit impulse function. Give their relationship 5 2 with different elementary signal.
 - (B) A continuous time signal x(t) is shown in figure(a). Sketch and label (i) x(t).u(1-t)

(ii) x(t) [u(t)-u(t-1)]

(iii) $x(t).\delta(t-3/2)$

Figure(a)

OR

(A) $X(n)=a^nu(-n-1), |a| > 1$, find the Fourier transform and Plot the 6 2 magnitude & Phase spectrum of X(n). 5

(B) Explain the Fourier Transform For Periodic Signals.

3 (A) Prove the
$$P_{\infty} = \lim_{T \to \infty} \frac{E_{\infty}}{2T} = 0.$$

(B) $y(n)=x(n^2)$, for given system determine whether system is (i) linear (ii) time invariant (iii) Memory (iv) causal

(C) State and Prove the Time-shifting for CTFT.

3

6

6

3

SECTION-II

4	(A) (B)	Find the convolution $y(t)=x(t)*h(t)$ of following signal, $x(t)=tu(t)$; $h(t)=u(t)$. Prove that the area of the convolution integral is equal to the product of the	3 4
	(C)	two signals entering into the convolution. Explain causality and stability of LTI Systems. OR	5
4	(A)	Show that (i) The convolution of an odd and even function is an odd function. (ii) The convolution of two odd functions is an even function	6
	(B)	(iii) The convolution of two out functions is an even function. (iii) The convolution of two even functions is an even function. Evaluate the convolution sum for a system with input $x(n)$ and impulse response $h(n)$, respectively, given by $x(n) \neq h(n) = [u(n+N) - u(n-N-1)]$.	6
5	(A)	Determine the Z-transform and ROC of the following finite duration signal $x(n) = \{1, 2, 6, -2, 0, 3\}$	2
toot	(B) (C)	$ \begin{array}{c} \uparrow \\ \text{Determine the Z-transform and ROC of the signal } x(n) = u(n) - u(n-10). \\ \text{Explain and prove following property of Z-Transform} \\ (i) Time shifting (ii) Time reversal (iii) Convolution property \\ \text{OR} \end{array} $	3 6
5	(A) (B)	Determine the Z-transform of unit impulse function and unit step function. What is meaning of Region of Convergence for Z-transform. List the all properties of ROC.	4
6	(A)	Determine the output response $y(n)$ using graphical method $x(n) = \{1, 2, 3, 2\}; h(n) = \{1, 2, 2\}.$	4
	(B)	Find the inverse Z-transform of $H(Z) = \frac{1+Z^{-1}}{1-(\frac{1}{3})Z^{-1}}$; when ROC: $ Z > \frac{1}{3}$ using	4
	(C)	a power series expansion. Explain and prove the following properties of convolution integral (i) Distributive property (ii) Shift property	4
END OF PAPER			
-		(B) Explain the Fourier Transform For Terrodic Signals.	

