GANPAT UNIVERSITY

B. Tech. Semester IV (EC)Engineering CBCS Regular Examination April - June 2015

2EC401: SIGNALS AND SYSTEMS

		Total Marks: 70	
	ime: 3		
1.1	nstruct		
	1. A	ttempt all questions. nswers to the two sections must be written in separate answer books.	
	2. A	igures to the right indicate full marks.	
	3. F	ssume suitable data, if necessary.	
	4. A	SECTION-I	
		Evaluate the convolution integral for a system with input $x(t)$ and impulse response	6
1	(A)	Evaluate the convolution integral for a system was approximate the convolution integral for a system was approximately, given by $x(t) = h(t) = [u(t+T) - u(t-T)]$	
		Find the convolution of the sequences $y(n) = x(n) * h(n)$ using graphical method	6
	(B)	and matrix method. $x(n) = {1,2,3,1 \atop \uparrow}$ and $h(n) = {2,1,2,1 \atop \uparrow}$	
		and matrix method. $x(n) = \{\uparrow\}$ and $x(n) = \{\uparrow\}$	
		Prove the following properties of convolution integral	6
1	(A)	(i)Commutative (ii)Distributive (iii)Convolution with impulse	
	(D)	Determine the output response $v(n) = x(n)^*h(n)$ of following	6
	(B)	(i) $x(n) = u(n)$; $h(n) = 2^n u(n)$; (ii) $x(n) = u(n)$; $h(n) = u(n-3)$;	
			3
2	(A)	Determine the z-transform and ROC of the following finite-duration signals	3
	()	(i) $\chi(n) = \{1,2,6,-2,0,3\}$ (ii) $\chi(n) = \{1,2,6,-2,0,3\}$	4
	(B)	Explain and prove following property of Z-Transform	4
	(-)	() T: 14. (ii) Time Chiffing	4
	(C)	Determine the z-transform and ROC of (1) $x(n) = -u(-n-1)$; (11) $x(n) = -u(-n-1)$;	
		UK	3
2	(A)	Determine the z-dansion and record	4
	(B)	Explain and prove following property of Z-Transform	
	(0)	(i) Scaling in z-Domain (ii) Time Reversal	4
	(C)	Determine the Z-transform of $x(n) = -\left(\frac{1}{2}\right)^n u(-n-1)$ and depict the ROC and	
		the locations of poles and zeros in the z-plane.	
			2
3	(A)	Show that the convolution of two odd functions is an even function.	
	(B)	Show that the convolution of two odd functions is an even random $X(z) = \frac{z}{z-0.5}$ Find the inverse Z-transform using a power series expansion of $X(z) = \frac{z}{z-0.5}$,
		when ROC: $ Z > 0.5$	5
	(C)	when ROC: Z > 0.3 Find the trigonometric Fourier Series for the waveform shown in figure (a).	~
	,	$\uparrow x(t)$	
		1 1 10 1 1	
		-4II -2II () 2.II 4II 6II t	
		$-4\pi - 2\pi \qquad 0\rangle = 4\pi \qquad 4\pi \qquad 4\pi \qquad Figure(a)$	
		1 iguic(a)	

SECTION-II

Write mathematical modeling of Impulse function in CTS and DTS. State and 6 4 prove any three properties of impulse function. Define Stable system. Determine whether the given system y(t)=tx(t) is stable or 4 (B) not? 2 Define the sampling function. (C) OR Determine whether signal is periodic, if it is, then find its fundamental period of the 6 (A) following signal.(i) $x(n) = \sin\left(\frac{2\pi n}{3}\right) + \cos\left(\frac{2\pi n}{5}\right)$ (ii) $x(t) = 3e^{j\frac{3}{5}\left(n + \frac{\pi}{4}\right)}$ 6 A continuous time signal x(t) is shown in figure(b) (B) (1) x(2t+3)(2) x(t/2) $(3) \times (-2t+1)$ tigue (b) Sketch and Find the inverse DTFT of $x(e^{j\omega}) = \delta(\omega)$, $-\pi < \omega < \pi$ 5 (A) 5 Find the Fourier transform of $x(t) = \cos \omega_0 t$, draw the magnitude and phase (B) spectrum 2 Define the Dirichelet Condition for CTFT (C) OR 6 Find the Fourier transform of the 5 (i) $x(n) = \delta(n+2) - \delta(n-2)$ (ii) $x(n) = \{1, -1, 2, 2\}$ 5 y(n) = 3x(n) + 4, Prove the given system is (B) (ii) Causal or non-causal (i) linear or non-linear (ii) Memory or Memory-less Determine whether signal is energy signals or Power signal, calculate their energy (A) or power of given signals (i) $x(n) = e^{j\left(\left(\frac{\pi}{2}\right)n + \frac{\pi}{8}\right)}$ (ii) x(t) = tu(t)Find the Fourier transform and Plot the magnitude & Phase spectrum of $x(t) = e^{-at}u(t), a > 0$

END OF PAPER